地热田混合钻头设计优化与应用,降低钻井成本

M. T. Fathaddin, Fakhri Ade Andika, R. Sitaresmi
{"title":"地热田混合钻头设计优化与应用,降低钻井成本","authors":"M. T. Fathaddin, Fakhri Ade Andika, R. Sitaresmi","doi":"10.25299/jeee.2020.4438","DOIUrl":null,"url":null,"abstract":"Hybrid bit is one of the innovations developed for very hard and abrasive formations such as in geothermal field. This bit eliminates the risk of losing cones, reduces tripping time, and increaseas ROP to reduce the well cost. The stage of data processing by calculating the UCS formation using D-BOS software and design optimization based on 9-7/8\" bits simulations in granodiorite formations. The 1st phase was to determine the 4 best out of 7 hybrid bit designs that were selected from the highest ROP obtained, the most stable cutter cutting force, and the lowest vibration by comparing the results of FEA modeling of 1 ft drilling simulation. The 2nd phase is to choose 1 of the best from the 4 selected by doing 50 ft of drilling dynamics simulation which is assessed by directional capability, the durability, and the lowest MSE. In this study to improve drilling optimization in geothermal field, it was found that the Z616 hybrid bit design was the most optimal one. Based on 1st phase simulation, this bit was able to produce ROP of 6.38 mph, a stable cutter cutting force, very low average lateral 2.109 g and axial vibration 0.329 g. Furthermore, for the 2nd phase simulation of 50 ft, seen from the comparison of directional capability, this bit has a 0.91 deg/100 ft DLS in rotating mode, and 6.5 deg/100ft DLS in sliding mode means quite stable when drilling in rotary mode and easy to make some angle in slide mode. By its durability, the average value of lateral acceleration is 10 g, and the lateral force is 6 klbf. By MSE side, this bit also produces the lowest average MSE value of 769 psi. From the economic view, this bit can save USD 198,625 - USD 564,712 of a well cost.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Optimization and Application of Hybrid Bit to Reduce a Well Cost in Geothermal Field\",\"authors\":\"M. T. Fathaddin, Fakhri Ade Andika, R. Sitaresmi\",\"doi\":\"10.25299/jeee.2020.4438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid bit is one of the innovations developed for very hard and abrasive formations such as in geothermal field. This bit eliminates the risk of losing cones, reduces tripping time, and increaseas ROP to reduce the well cost. The stage of data processing by calculating the UCS formation using D-BOS software and design optimization based on 9-7/8\\\" bits simulations in granodiorite formations. The 1st phase was to determine the 4 best out of 7 hybrid bit designs that were selected from the highest ROP obtained, the most stable cutter cutting force, and the lowest vibration by comparing the results of FEA modeling of 1 ft drilling simulation. The 2nd phase is to choose 1 of the best from the 4 selected by doing 50 ft of drilling dynamics simulation which is assessed by directional capability, the durability, and the lowest MSE. In this study to improve drilling optimization in geothermal field, it was found that the Z616 hybrid bit design was the most optimal one. Based on 1st phase simulation, this bit was able to produce ROP of 6.38 mph, a stable cutter cutting force, very low average lateral 2.109 g and axial vibration 0.329 g. Furthermore, for the 2nd phase simulation of 50 ft, seen from the comparison of directional capability, this bit has a 0.91 deg/100 ft DLS in rotating mode, and 6.5 deg/100ft DLS in sliding mode means quite stable when drilling in rotary mode and easy to make some angle in slide mode. By its durability, the average value of lateral acceleration is 10 g, and the lateral force is 6 klbf. By MSE side, this bit also produces the lowest average MSE value of 769 psi. From the economic view, this bit can save USD 198,625 - USD 564,712 of a well cost.\",\"PeriodicalId\":33635,\"journal\":{\"name\":\"Journal of Earth Energy Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Energy Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25299/jeee.2020.4438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jeee.2020.4438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混合钻头是为地热田等非常坚硬和磨蚀性地层开发的创新产品之一。该钻头消除了锥筒丢失的风险,减少了起下钻时间,提高了机械钻速,从而降低了钻井成本。数据处理阶段,使用D-BOS软件计算UCS地层,并基于花岗闪长岩地层的9-7/8”钻头模拟进行优化设计。第一阶段是通过比较1英尺钻井模拟的FEA建模结果,从获得的最高ROP、最稳定的切削力和最低的振动中选出7种最佳混合钻头设计中的4种。第二阶段是通过进行50英尺的钻井动力学模拟,从4个选择中选出1个最佳,通过定向能力、耐久性和最低MSE进行评估。通过对地热田钻井优化的研究,发现Z616混合式钻头设计是最优设计。根据第一阶段的模拟,该钻头能够产生6.38 mph的ROP,稳定的切削力,非常低的平均横向2.109 g和轴向0.329 g振动。此外,在50英尺的第二阶段模拟中,从定向能力的比较来看,该钻头在旋转模式下的DLS为0.91°/100英尺,在滑动模式下的DLS为6.5°/100英尺,这意味着在旋转模式下钻进非常稳定,在滑动模式下很容易形成一定的角度。根据其耐久性,侧向加速度平均值为10 g,侧向力为6 klbf。在MSE方面,该钻头的平均MSE值也最低,为769 psi。从经济角度来看,该钻头可节省198,625 - 564,712美元的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Optimization and Application of Hybrid Bit to Reduce a Well Cost in Geothermal Field
Hybrid bit is one of the innovations developed for very hard and abrasive formations such as in geothermal field. This bit eliminates the risk of losing cones, reduces tripping time, and increaseas ROP to reduce the well cost. The stage of data processing by calculating the UCS formation using D-BOS software and design optimization based on 9-7/8" bits simulations in granodiorite formations. The 1st phase was to determine the 4 best out of 7 hybrid bit designs that were selected from the highest ROP obtained, the most stable cutter cutting force, and the lowest vibration by comparing the results of FEA modeling of 1 ft drilling simulation. The 2nd phase is to choose 1 of the best from the 4 selected by doing 50 ft of drilling dynamics simulation which is assessed by directional capability, the durability, and the lowest MSE. In this study to improve drilling optimization in geothermal field, it was found that the Z616 hybrid bit design was the most optimal one. Based on 1st phase simulation, this bit was able to produce ROP of 6.38 mph, a stable cutter cutting force, very low average lateral 2.109 g and axial vibration 0.329 g. Furthermore, for the 2nd phase simulation of 50 ft, seen from the comparison of directional capability, this bit has a 0.91 deg/100 ft DLS in rotating mode, and 6.5 deg/100ft DLS in sliding mode means quite stable when drilling in rotary mode and easy to make some angle in slide mode. By its durability, the average value of lateral acceleration is 10 g, and the lateral force is 6 klbf. By MSE side, this bit also produces the lowest average MSE value of 769 psi. From the economic view, this bit can save USD 198,625 - USD 564,712 of a well cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信