Diana P. N. Gonçalves, M. Prévôt, Şenay Üstünel, Timothy Ogolla, Ahlam Nemati, Sasan Shadpour, T. Hegmann
{"title":"纳米材料手性与液晶界面研究进展","authors":"Diana P. N. Gonçalves, M. Prévôt, Şenay Üstünel, Timothy Ogolla, Ahlam Nemati, Sasan Shadpour, T. Hegmann","doi":"10.1080/21680396.2021.1930596","DOIUrl":null,"url":null,"abstract":"Chirality of nanomaterials is a rapidly evolving field, largely driven by the unique optical, electronic, magnetic or catalytic properties of plasmonic, magnetic and semiconductor nanomaterials among others. Liquid crystals continue to play a major role in developing a better understanding of their inherent chiroptical properties as well as serving as reporters to quantify and visualize nanomaterial chirality. Furthermore, liquid crystal phases are increasingly explored as potentially tuneable templates for the helical assembly of various types of nanomaterials. This review summarizes recent progress in this area by describing representative examples and key strategies pursued to interface nanomaterial and liquid crystal chirality. These studies focus on a range of organic and inorganic nanomaterials varying in size, shape and composition as well as on both thermotropic and lyotropic liquid crystal phases. Finally, the two materials concepts merge when liquid crystal molecules self-assemble into distinct filamentous chiral nanoshapes capable of templating other nanomaterials. GRAPHICAL ABSTRACT","PeriodicalId":18087,"journal":{"name":"Liquid Crystals Reviews","volume":"9 1","pages":"1 - 34"},"PeriodicalIF":4.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21680396.2021.1930596","citationCount":"10","resultStr":"{\"title\":\"Recent progress at the interface between nanomaterial chirality and liquid crystals\",\"authors\":\"Diana P. N. Gonçalves, M. Prévôt, Şenay Üstünel, Timothy Ogolla, Ahlam Nemati, Sasan Shadpour, T. Hegmann\",\"doi\":\"10.1080/21680396.2021.1930596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chirality of nanomaterials is a rapidly evolving field, largely driven by the unique optical, electronic, magnetic or catalytic properties of plasmonic, magnetic and semiconductor nanomaterials among others. Liquid crystals continue to play a major role in developing a better understanding of their inherent chiroptical properties as well as serving as reporters to quantify and visualize nanomaterial chirality. Furthermore, liquid crystal phases are increasingly explored as potentially tuneable templates for the helical assembly of various types of nanomaterials. This review summarizes recent progress in this area by describing representative examples and key strategies pursued to interface nanomaterial and liquid crystal chirality. These studies focus on a range of organic and inorganic nanomaterials varying in size, shape and composition as well as on both thermotropic and lyotropic liquid crystal phases. Finally, the two materials concepts merge when liquid crystal molecules self-assemble into distinct filamentous chiral nanoshapes capable of templating other nanomaterials. GRAPHICAL ABSTRACT\",\"PeriodicalId\":18087,\"journal\":{\"name\":\"Liquid Crystals Reviews\",\"volume\":\"9 1\",\"pages\":\"1 - 34\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21680396.2021.1930596\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid Crystals Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21680396.2021.1930596\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21680396.2021.1930596","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent progress at the interface between nanomaterial chirality and liquid crystals
Chirality of nanomaterials is a rapidly evolving field, largely driven by the unique optical, electronic, magnetic or catalytic properties of plasmonic, magnetic and semiconductor nanomaterials among others. Liquid crystals continue to play a major role in developing a better understanding of their inherent chiroptical properties as well as serving as reporters to quantify and visualize nanomaterial chirality. Furthermore, liquid crystal phases are increasingly explored as potentially tuneable templates for the helical assembly of various types of nanomaterials. This review summarizes recent progress in this area by describing representative examples and key strategies pursued to interface nanomaterial and liquid crystal chirality. These studies focus on a range of organic and inorganic nanomaterials varying in size, shape and composition as well as on both thermotropic and lyotropic liquid crystal phases. Finally, the two materials concepts merge when liquid crystal molecules self-assemble into distinct filamentous chiral nanoshapes capable of templating other nanomaterials. GRAPHICAL ABSTRACT
期刊介绍:
Liquid Crystals Reviews publishes review articles on all aspects of liquid crystal fundamentals and applied science, including experimental and theoretical studies of physical and chemical properties, molecular design and synthesis and engineering of liquid crystal devices. The Journal fosters cross-disciplinary exchange of ideas, encouraging authors to present material at a level accessible to specialists from other fields of science and engineering. Liquid Crystals Reviews provides the scientific community, in both academia and industry, with a publication of standing, guaranteed by the Editors and by the International Editorial Board who are active scientists in the worldwide liquid crystal community.