由对合、偏序集数和中心测度生成的群

IF 1.4 4区 数学 Q1 MATHEMATICS
A. Vershik
{"title":"由对合、偏序集数和中心测度生成的群","authors":"A. Vershik","doi":"10.1070/RM10016","DOIUrl":null,"url":null,"abstract":"1. Definitions. An infinite countable ordered set {P,≻, ∅} with minimal element ∅ and no maximal elements is called a locally finite poset if all its principal ideals are finite. A monotone numbering of P (or a part of P ) is an injective map φ : N → P from the set of positive integers to P satisfying the following conditions: if φ(n) ≻ φ(m), then n > m, with φ(0) = ∅. The distributive lattice ΓP of all finite ideals of a locally finite poset {P,≻} forms an N-graded graph (the Hasse diagram of the lattice). A monotone numbering of P can be identified in a natural way with a maximal path in the lattice ΓP . The set TP of all monotone numberings of P , that is, the space of infinite paths in the graph ΓP can be endowed with the natural structure of a Borel and topological space. In the terminology related to the Young graph, the poset P is the set of Z+-finite ideals, that is, Young diagrams, and monotone numberings are Young tableaux. Let P be a finite (|P | < n ∈ N) or locally finite (n = ∞) poset. For each i < n, we define an involution σi acting correctly on the space of numberings TP = {φ} of P :","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"729 - 731"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Groups generated by involutions, numberings of posets, and central measures\",\"authors\":\"A. Vershik\",\"doi\":\"10.1070/RM10016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1. Definitions. An infinite countable ordered set {P,≻, ∅} with minimal element ∅ and no maximal elements is called a locally finite poset if all its principal ideals are finite. A monotone numbering of P (or a part of P ) is an injective map φ : N → P from the set of positive integers to P satisfying the following conditions: if φ(n) ≻ φ(m), then n > m, with φ(0) = ∅. The distributive lattice ΓP of all finite ideals of a locally finite poset {P,≻} forms an N-graded graph (the Hasse diagram of the lattice). A monotone numbering of P can be identified in a natural way with a maximal path in the lattice ΓP . The set TP of all monotone numberings of P , that is, the space of infinite paths in the graph ΓP can be endowed with the natural structure of a Borel and topological space. In the terminology related to the Young graph, the poset P is the set of Z+-finite ideals, that is, Young diagrams, and monotone numberings are Young tableaux. Let P be a finite (|P | < n ∈ N) or locally finite (n = ∞) poset. For each i < n, we define an involution σi acting correctly on the space of numberings TP = {φ} of P :\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"729 - 731\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

1.定义。如果一个无穷可数有序集{P,≻,∅}的所有主理想都是有限的,则称其为局部有限偏序集。P(或P的一部分)的单调编号是内射映射φ:N→ 从正整数集到满足以下条件的P:如果φ(n)≻φ(m),则n>m,其中φ(0)=∅。局部有限偏序集{P,≻}的所有有限理想的分配格ΓP形成N分次图(格的Hasse图)。P的单调编号可以用格ΓP中的最大路径以自然的方式识别。P的所有单调数的集合TP,即图ΓP中无限路径的空间,可以被赋予Borel和拓扑空间的自然结构。在与Young图有关的术语中,偏序集P是Z+-有限理想的集合,即Young图,单调数是Young表。设P是有限的(|P|本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Groups generated by involutions, numberings of posets, and central measures
1. Definitions. An infinite countable ordered set {P,≻, ∅} with minimal element ∅ and no maximal elements is called a locally finite poset if all its principal ideals are finite. A monotone numbering of P (or a part of P ) is an injective map φ : N → P from the set of positive integers to P satisfying the following conditions: if φ(n) ≻ φ(m), then n > m, with φ(0) = ∅. The distributive lattice ΓP of all finite ideals of a locally finite poset {P,≻} forms an N-graded graph (the Hasse diagram of the lattice). A monotone numbering of P can be identified in a natural way with a maximal path in the lattice ΓP . The set TP of all monotone numberings of P , that is, the space of infinite paths in the graph ΓP can be endowed with the natural structure of a Borel and topological space. In the terminology related to the Young graph, the poset P is the set of Z+-finite ideals, that is, Young diagrams, and monotone numberings are Young tableaux. Let P be a finite (|P | < n ∈ N) or locally finite (n = ∞) poset. For each i < n, we define an involution σi acting correctly on the space of numberings TP = {φ} of P :
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematical Surveys
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信