基于人工智能的高强混凝土配合比设计系统的开发

Q2 Social Sciences
Dae-Geon Kim
{"title":"基于人工智能的高强混凝土配合比设计系统的开发","authors":"Dae-Geon Kim","doi":"10.14704/web/v19i1/web19281","DOIUrl":null,"url":null,"abstract":"The quality inspection of high-strength concrete construction sites consists of a compressive strength test that is considered the most important, but this can be confirmed through a compressive strength test after 28 days of high-strength concrete application. Therefore, it is of paramount importance to ship high-quality products to ready-mixed concrete factories by increasing the reliability of the mixed design that affects high-strength concrete production. In addition, there is a need to develop an efficient management system for mixed design that determines high-strength concrete quality by measuring the mixing ratio of materials in the ready-mixed concrete factory production stage. This study used matrix laboratory(MATLAB) using Deep learning, a language that performs mathematics and engineering calculations based on matrices, and presented a mixed design model by adjusting the strength through input and output variables, learning data collection, model structure determination, learning error, and repetition results. The predicted mean value of 40 MPa was measured at 40.75 MPa, showing a difference of 0.75 MPa and 40 MPa, and the error rate was confirmed to be 4.13%. And the predicted mean value of 55 MPa was measured as 55.55 MPa, showing a difference between 55 MPa and 0.55 MPa, and the error rate was confirmed to be 1.73%. Through this study, the reliability of high-strength concrete quality management is secured by applying a high-strength concrete mixed design system using artificial intelligence(AI) and adjusting it in connection with all fields of the production process.","PeriodicalId":35441,"journal":{"name":"Webology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of High-Strength Concrete Mixed Design System Using Artificial Intelligence\",\"authors\":\"Dae-Geon Kim\",\"doi\":\"10.14704/web/v19i1/web19281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality inspection of high-strength concrete construction sites consists of a compressive strength test that is considered the most important, but this can be confirmed through a compressive strength test after 28 days of high-strength concrete application. Therefore, it is of paramount importance to ship high-quality products to ready-mixed concrete factories by increasing the reliability of the mixed design that affects high-strength concrete production. In addition, there is a need to develop an efficient management system for mixed design that determines high-strength concrete quality by measuring the mixing ratio of materials in the ready-mixed concrete factory production stage. This study used matrix laboratory(MATLAB) using Deep learning, a language that performs mathematics and engineering calculations based on matrices, and presented a mixed design model by adjusting the strength through input and output variables, learning data collection, model structure determination, learning error, and repetition results. The predicted mean value of 40 MPa was measured at 40.75 MPa, showing a difference of 0.75 MPa and 40 MPa, and the error rate was confirmed to be 4.13%. And the predicted mean value of 55 MPa was measured as 55.55 MPa, showing a difference between 55 MPa and 0.55 MPa, and the error rate was confirmed to be 1.73%. Through this study, the reliability of high-strength concrete quality management is secured by applying a high-strength concrete mixed design system using artificial intelligence(AI) and adjusting it in connection with all fields of the production process.\",\"PeriodicalId\":35441,\"journal\":{\"name\":\"Webology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Webology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14704/web/v19i1/web19281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Webology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14704/web/v19i1/web19281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

高强度混凝土施工现场的质量检查包括抗压强度测试,这被认为是最重要的,但这可以通过高强度混凝土应用28天后的抗压强度测试来确认。因此,通过提高影响高强度混凝土生产的混合设计的可靠性,将高质量的产品运送到预拌混凝土工厂至关重要。此外,有必要开发一个有效的混合设计管理系统,通过测量预拌混凝土工厂生产阶段材料的配合比来确定高强度混凝土的质量。本研究使用了使用深度学习的矩阵实验室(MATLAB),深度学习是一种基于矩阵进行数学和工程计算的语言,并通过输入和输出变量、学习数据收集、模型结构确定、学习误差和重复结果来调整强度,提出了一个混合设计模型。40 MPa的预测平均值在40.75 MPa下测量,显示出0.75 MPa和40 MPa之间的差异,误差率被确认为4.13%。55 MPa的预测均值在55 MPa下测量为55.55 MPa,显示出55 MPa和0.55 MPa之间的差距,误差率确认为1.73%。通过本研究,通过应用人工智能的高强度混凝土混合设计系统并结合生产过程的各个领域对其进行调整,确保了高强度混凝土质量管理的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of High-Strength Concrete Mixed Design System Using Artificial Intelligence
The quality inspection of high-strength concrete construction sites consists of a compressive strength test that is considered the most important, but this can be confirmed through a compressive strength test after 28 days of high-strength concrete application. Therefore, it is of paramount importance to ship high-quality products to ready-mixed concrete factories by increasing the reliability of the mixed design that affects high-strength concrete production. In addition, there is a need to develop an efficient management system for mixed design that determines high-strength concrete quality by measuring the mixing ratio of materials in the ready-mixed concrete factory production stage. This study used matrix laboratory(MATLAB) using Deep learning, a language that performs mathematics and engineering calculations based on matrices, and presented a mixed design model by adjusting the strength through input and output variables, learning data collection, model structure determination, learning error, and repetition results. The predicted mean value of 40 MPa was measured at 40.75 MPa, showing a difference of 0.75 MPa and 40 MPa, and the error rate was confirmed to be 4.13%. And the predicted mean value of 55 MPa was measured as 55.55 MPa, showing a difference between 55 MPa and 0.55 MPa, and the error rate was confirmed to be 1.73%. Through this study, the reliability of high-strength concrete quality management is secured by applying a high-strength concrete mixed design system using artificial intelligence(AI) and adjusting it in connection with all fields of the production process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Webology
Webology Social Sciences-Library and Information Sciences
自引率
0.00%
发文量
374
审稿时长
10 weeks
期刊介绍: Webology is an international peer-reviewed journal in English devoted to the field of the World Wide Web and serves as a forum for discussion and experimentation. It serves as a forum for new research in information dissemination and communication processes in general, and in the context of the World Wide Web in particular. Concerns include the production, gathering, recording, processing, storing, representing, sharing, transmitting, retrieving, distribution, and dissemination of information, as well as its social and cultural impacts. There is a strong emphasis on the Web and new information technologies. Special topic issues are also often seen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信