L. Bing, L. Youle, Chen Chuan, Xu Jianliang, Lian Huashan, Ma Zhun
{"title":"基于微流的降膜蒸发器处理含盐废水竖管内传热系数分布及实验验证","authors":"L. Bing, L. Youle, Chen Chuan, Xu Jianliang, Lian Huashan, Ma Zhun","doi":"10.2166/wrd.2021.014","DOIUrl":null,"url":null,"abstract":"\n It is still one of the significant solutions to treat saline wastewater with thermal desalination technology, especially falling film evaporators. To improve the performance of the falling film evaporator, a numerical study on the gas–liquid two-phase flow characteristics of saline wastewater in the vertical pipe was conducted using the VOF model. The results showed that the inlet velocity of the saline wastewater increased under the same operating conditions, resulting in the thickening of the liquid film and the increase of the average convective heat transfer coefficient. Increasing the inlet temperature of the working liquid reduced the temperature difference, which led to a decrease of the average convective heat transfer coefficient. In addition, as the inlet concentration of the working liquid increased, the film flow rate and the average convective heat transfer coefficient first decreased and then increased slightly. The experimental results verified the accuracy of the numerical simulation, and the average error was 9.27%.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distribution of heat transfer coefficient in the vertical tube of falling film evaporator treating saline wastewater based on micro flow and experimental verification\",\"authors\":\"L. Bing, L. Youle, Chen Chuan, Xu Jianliang, Lian Huashan, Ma Zhun\",\"doi\":\"10.2166/wrd.2021.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n It is still one of the significant solutions to treat saline wastewater with thermal desalination technology, especially falling film evaporators. To improve the performance of the falling film evaporator, a numerical study on the gas–liquid two-phase flow characteristics of saline wastewater in the vertical pipe was conducted using the VOF model. The results showed that the inlet velocity of the saline wastewater increased under the same operating conditions, resulting in the thickening of the liquid film and the increase of the average convective heat transfer coefficient. Increasing the inlet temperature of the working liquid reduced the temperature difference, which led to a decrease of the average convective heat transfer coefficient. In addition, as the inlet concentration of the working liquid increased, the film flow rate and the average convective heat transfer coefficient first decreased and then increased slightly. The experimental results verified the accuracy of the numerical simulation, and the average error was 9.27%.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2021.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2021.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Distribution of heat transfer coefficient in the vertical tube of falling film evaporator treating saline wastewater based on micro flow and experimental verification
It is still one of the significant solutions to treat saline wastewater with thermal desalination technology, especially falling film evaporators. To improve the performance of the falling film evaporator, a numerical study on the gas–liquid two-phase flow characteristics of saline wastewater in the vertical pipe was conducted using the VOF model. The results showed that the inlet velocity of the saline wastewater increased under the same operating conditions, resulting in the thickening of the liquid film and the increase of the average convective heat transfer coefficient. Increasing the inlet temperature of the working liquid reduced the temperature difference, which led to a decrease of the average convective heat transfer coefficient. In addition, as the inlet concentration of the working liquid increased, the film flow rate and the average convective heat transfer coefficient first decreased and then increased slightly. The experimental results verified the accuracy of the numerical simulation, and the average error was 9.27%.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.