Bruno Rogerio de Souza, Lílian Estrela Borges Baldotto, A. M. Paula, F. Campos, Klever Cristiano Silveira, P. M. Vieira, F. F. Sodré, J. Busato
{"title":"巴西嫩叶相关有益菌的筛选,开发农业微生物接种剂","authors":"Bruno Rogerio de Souza, Lílian Estrela Borges Baldotto, A. M. Paula, F. Campos, Klever Cristiano Silveira, P. M. Vieira, F. F. Sodré, J. Busato","doi":"10.21475/poj.12.02.19.p2025","DOIUrl":null,"url":null,"abstract":"Beneficial bacteria belong to a group of microorganisms that are able to enhance plant growth by several mechanisms. In this study, phosphorus and zinc solubilizing, nitrogen-fixing and indole acetic acid (IAA) producing bacteria associated with C. brasiliensis were screened to develop microbial inoculants (MI) for use in agriculture. Characterization and identification of screened bacteria were also performed. A total of thirty-one nitrogen-fixing bacteria isolates were obtained, of which 28 showed the ability to solubilize phosphorus and 25 to solubilize zinc. The isolate AP-JNFb-3-2, belonging to the genus Pseudomonas, presented the highest value of solubilized phosphorus (100.4 µg mL-1). The isolates AP-JNFb-3-2 and RHI-JMVL-3-1, associated with the genera Pseudomonas and Enterobacter, respectively, showed the highest values for zinc solubilization (147.8 and 147.7 µg mL-1). Isolate RO-LGI.P-3-2, belonging to the genus Pseudomonas, was the most promising for IAA production (0.52 µg mL-1). The results obtained showed the presence of a large diversity of beneficial bacteria associated with C. brasiliensis, which may be explored as MI in agriculture.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Screening of beneficial bacteria associated with Calophyllum brasiliense Cambess so as to develop microbial inoculants for agriculture\",\"authors\":\"Bruno Rogerio de Souza, Lílian Estrela Borges Baldotto, A. M. Paula, F. Campos, Klever Cristiano Silveira, P. M. Vieira, F. F. Sodré, J. Busato\",\"doi\":\"10.21475/poj.12.02.19.p2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beneficial bacteria belong to a group of microorganisms that are able to enhance plant growth by several mechanisms. In this study, phosphorus and zinc solubilizing, nitrogen-fixing and indole acetic acid (IAA) producing bacteria associated with C. brasiliensis were screened to develop microbial inoculants (MI) for use in agriculture. Characterization and identification of screened bacteria were also performed. A total of thirty-one nitrogen-fixing bacteria isolates were obtained, of which 28 showed the ability to solubilize phosphorus and 25 to solubilize zinc. The isolate AP-JNFb-3-2, belonging to the genus Pseudomonas, presented the highest value of solubilized phosphorus (100.4 µg mL-1). The isolates AP-JNFb-3-2 and RHI-JMVL-3-1, associated with the genera Pseudomonas and Enterobacter, respectively, showed the highest values for zinc solubilization (147.8 and 147.7 µg mL-1). Isolate RO-LGI.P-3-2, belonging to the genus Pseudomonas, was the most promising for IAA production (0.52 µg mL-1). The results obtained showed the presence of a large diversity of beneficial bacteria associated with C. brasiliensis, which may be explored as MI in agriculture.\",\"PeriodicalId\":54602,\"journal\":{\"name\":\"Plant Omics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Omics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/poj.12.02.19.p2025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/poj.12.02.19.p2025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Screening of beneficial bacteria associated with Calophyllum brasiliense Cambess so as to develop microbial inoculants for agriculture
Beneficial bacteria belong to a group of microorganisms that are able to enhance plant growth by several mechanisms. In this study, phosphorus and zinc solubilizing, nitrogen-fixing and indole acetic acid (IAA) producing bacteria associated with C. brasiliensis were screened to develop microbial inoculants (MI) for use in agriculture. Characterization and identification of screened bacteria were also performed. A total of thirty-one nitrogen-fixing bacteria isolates were obtained, of which 28 showed the ability to solubilize phosphorus and 25 to solubilize zinc. The isolate AP-JNFb-3-2, belonging to the genus Pseudomonas, presented the highest value of solubilized phosphorus (100.4 µg mL-1). The isolates AP-JNFb-3-2 and RHI-JMVL-3-1, associated with the genera Pseudomonas and Enterobacter, respectively, showed the highest values for zinc solubilization (147.8 and 147.7 µg mL-1). Isolate RO-LGI.P-3-2, belonging to the genus Pseudomonas, was the most promising for IAA production (0.52 µg mL-1). The results obtained showed the presence of a large diversity of beneficial bacteria associated with C. brasiliensis, which may be explored as MI in agriculture.
期刊介绍:
Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including:
Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.