基于代码的数字签名方案分析

Q2 Computer Science
Rupali Khurana, E. Narwal
{"title":"基于代码的数字签名方案分析","authors":"Rupali Khurana, E. Narwal","doi":"10.11591/ijece.v13i5.pp5534-5541","DOIUrl":null,"url":null,"abstract":"Digital signatures are in high demand because they allow authentication and non-repudiation. Existing digital signature systems, such as digital signature algorithm (DSA), elliptic curve digital signature algorithm (ECDSA), and others, are based on number theory problems such as discrete logarithmic problems and integer factorization problems. These recently used digital signatures are not secure with quantum computers. To protect against quantum computer attacks, many researchers propose digital signature schemes based on error-correcting codes such as linear, Goppa, polar, and so on. We studied 16 distinct papers based on various error-correcting codes and analyzed their various features such as signing and verification efficiency, signature size, public key size, and security against multiple attacks.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of code-based digital signature schemes\",\"authors\":\"Rupali Khurana, E. Narwal\",\"doi\":\"10.11591/ijece.v13i5.pp5534-5541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital signatures are in high demand because they allow authentication and non-repudiation. Existing digital signature systems, such as digital signature algorithm (DSA), elliptic curve digital signature algorithm (ECDSA), and others, are based on number theory problems such as discrete logarithmic problems and integer factorization problems. These recently used digital signatures are not secure with quantum computers. To protect against quantum computer attacks, many researchers propose digital signature schemes based on error-correcting codes such as linear, Goppa, polar, and so on. We studied 16 distinct papers based on various error-correcting codes and analyzed their various features such as signing and verification efficiency, signature size, public key size, and security against multiple attacks.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5534-5541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5534-5541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

数字签名的需求量很大,因为它们允许身份验证和不可否认性。现有的数字签名系统,如数字签名算法(DSA)、椭圆曲线数字签名算法等,都是基于离散对数问题和整数分解问题等数论问题。这些最近使用的数字签名在量子计算机上是不安全的。为了抵御量子计算机攻击,许多研究人员提出了基于线性、Goppa、polar等纠错码的数字签名方案。我们研究了16篇基于各种纠错码的不同论文,分析了它们的各种特征,如签名和验证效率、签名大小、公钥大小以及抵御多重攻击的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of code-based digital signature schemes
Digital signatures are in high demand because they allow authentication and non-repudiation. Existing digital signature systems, such as digital signature algorithm (DSA), elliptic curve digital signature algorithm (ECDSA), and others, are based on number theory problems such as discrete logarithmic problems and integer factorization problems. These recently used digital signatures are not secure with quantum computers. To protect against quantum computer attacks, many researchers propose digital signature schemes based on error-correcting codes such as linear, Goppa, polar, and so on. We studied 16 distinct papers based on various error-correcting codes and analyzed their various features such as signing and verification efficiency, signature size, public key size, and security against multiple attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信