内部丰富类别

IF 0.6 4区 数学 Q3 MATHEMATICS
Enrico Ghiorzi
{"title":"内部丰富类别","authors":"Enrico Ghiorzi","doi":"10.1007/s10485-022-09678-w","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the theory of enrichment over an internal monoidal category as a common generalization of both the standard theories of enriched and internal categories. Then, we contextualize the new notion by comparing it to another known generalization of enrichment: that of enrichment for indexed categories. It turns out that the two notions are closely related.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-022-09678-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Internal Enriched Categories\",\"authors\":\"Enrico Ghiorzi\",\"doi\":\"10.1007/s10485-022-09678-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the theory of enrichment over an internal monoidal category as a common generalization of both the standard theories of enriched and internal categories. Then, we contextualize the new notion by comparing it to another known generalization of enrichment: that of enrichment for indexed categories. It turns out that the two notions are closely related.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-022-09678-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-022-09678-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09678-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了内一元范畴上的富集理论,作为富集标准理论和内范畴标准理论的共同推广。然后,我们将这个新概念与另一个已知的浓缩的概括:索引类别的浓缩进行比较。事实证明,这两个概念是密切相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal Enriched Categories

We introduce the theory of enrichment over an internal monoidal category as a common generalization of both the standard theories of enriched and internal categories. Then, we contextualize the new notion by comparing it to another known generalization of enrichment: that of enrichment for indexed categories. It turns out that the two notions are closely related.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信