L. Chen, Y. Li, X. Huang, J. Deng, Chunxiao Qu, X. Q. Zhang, B. Huang, Y. Zhang, L. Gong, K. Yu
{"title":"苍术萜类合成酶基因AlTPS1的克隆及功能分析","authors":"L. Chen, Y. Li, X. Huang, J. Deng, Chunxiao Qu, X. Q. Zhang, B. Huang, Y. Zhang, L. Gong, K. Yu","doi":"10.32615/bp.2021.054","DOIUrl":null,"url":null,"abstract":"Terpenoids form the largest class of plant secondary metabolites are very structurally diverse, with more than 50 000 natural products identified (Vattekkatte et al. 2018). They have essential functions in various basic plant processes (e.g., signaling molecules and phytohormones) and myriad roles in plant secondary metabolism, such as the repelling of herbivores, attraction of beneficial organisms, communication between plants, and mediation of complex interactions with the environment (Pichersky and Raguso 2018). Their extensive use in cosmetics, as flavorings, in pharmaceuticals, in the chemical industry, and as biofuel substitutes has made terpenoids indispensable (Pyne et al. 2019). Although terpenoids have different chemical structures, they are biosynthesized from two interconvertible fivecarbon compounds: isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP). These compounds are generated separately by the methylerythritol phosphate (MEP) and mevalonic acid (MVA) pathways in plastids and the cytoplasm, respectively (Vattekkatte et al. 2018). IPP and DMAPP are then condensed head-to-tail by prenyltransferases to produce the terpene precursors","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloning and functional characterization of a terpene synthase gene AlTPS1 from Atractylodes lancea\",\"authors\":\"L. Chen, Y. Li, X. Huang, J. Deng, Chunxiao Qu, X. Q. Zhang, B. Huang, Y. Zhang, L. Gong, K. Yu\",\"doi\":\"10.32615/bp.2021.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terpenoids form the largest class of plant secondary metabolites are very structurally diverse, with more than 50 000 natural products identified (Vattekkatte et al. 2018). They have essential functions in various basic plant processes (e.g., signaling molecules and phytohormones) and myriad roles in plant secondary metabolism, such as the repelling of herbivores, attraction of beneficial organisms, communication between plants, and mediation of complex interactions with the environment (Pichersky and Raguso 2018). Their extensive use in cosmetics, as flavorings, in pharmaceuticals, in the chemical industry, and as biofuel substitutes has made terpenoids indispensable (Pyne et al. 2019). Although terpenoids have different chemical structures, they are biosynthesized from two interconvertible fivecarbon compounds: isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP). These compounds are generated separately by the methylerythritol phosphate (MEP) and mevalonic acid (MVA) pathways in plastids and the cytoplasm, respectively (Vattekkatte et al. 2018). IPP and DMAPP are then condensed head-to-tail by prenyltransferases to produce the terpene precursors\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/bp.2021.054\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2021.054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Cloning and functional characterization of a terpene synthase gene AlTPS1 from Atractylodes lancea
Terpenoids form the largest class of plant secondary metabolites are very structurally diverse, with more than 50 000 natural products identified (Vattekkatte et al. 2018). They have essential functions in various basic plant processes (e.g., signaling molecules and phytohormones) and myriad roles in plant secondary metabolism, such as the repelling of herbivores, attraction of beneficial organisms, communication between plants, and mediation of complex interactions with the environment (Pichersky and Raguso 2018). Their extensive use in cosmetics, as flavorings, in pharmaceuticals, in the chemical industry, and as biofuel substitutes has made terpenoids indispensable (Pyne et al. 2019). Although terpenoids have different chemical structures, they are biosynthesized from two interconvertible fivecarbon compounds: isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP). These compounds are generated separately by the methylerythritol phosphate (MEP) and mevalonic acid (MVA) pathways in plastids and the cytoplasm, respectively (Vattekkatte et al. 2018). IPP and DMAPP are then condensed head-to-tail by prenyltransferases to produce the terpene precursors
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.