基于Green函数的新的Hermite-Hadamard型量子不等式

Q4 Mathematics
Sundas Khan, H. Budak, Yuming Chu
{"title":"基于Green函数的新的Hermite-Hadamard型量子不等式","authors":"Sundas Khan, H. Budak, Yuming Chu","doi":"10.24193/mathcluj.2022.2.08","DOIUrl":null,"url":null,"abstract":"In this study, the Hermite-Hadamard inequality for q^{kappa_2}-integrals is demonstrated by a new method called the Green Function Technique. For this purpose, we first obtain certain identities. Then, by using these identities, we establish many new inequalities for functions whose second derivative is convex, monotone and concave in absolute value.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New quantum inequalities of Hermite-Hadamard type via Green function\",\"authors\":\"Sundas Khan, H. Budak, Yuming Chu\",\"doi\":\"10.24193/mathcluj.2022.2.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the Hermite-Hadamard inequality for q^{kappa_2}-integrals is demonstrated by a new method called the Green Function Technique. For this purpose, we first obtain certain identities. Then, by using these identities, we establish many new inequalities for functions whose second derivative is convex, monotone and concave in absolute value.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2022.2.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2022.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,q的Hermite-Hadamard不等式^{kappa_2}-integrals通过一种称为格林函数技术的新方法来证明。为此,我们首先获得某些身份。然后,利用这些恒等式,我们为二阶导数为凸、单调和绝对值为凹的函数建立了许多新的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New quantum inequalities of Hermite-Hadamard type via Green function
In this study, the Hermite-Hadamard inequality for q^{kappa_2}-integrals is demonstrated by a new method called the Green Function Technique. For this purpose, we first obtain certain identities. Then, by using these identities, we establish many new inequalities for functions whose second derivative is convex, monotone and concave in absolute value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信