{"title":"关于Blaschke乘积的一个边界性质","authors":"A. A. Danielyan, S. Pasias","doi":"10.1007/s10476-023-0212-8","DOIUrl":null,"url":null,"abstract":"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> \\ <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a boundary property of Blaschke products\",\"authors\":\"A. A. Danielyan, S. Pasias\",\"doi\":\"10.1007/s10476-023-0212-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> \\\\ <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0212-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0212-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Blaschke product has no radial limits on a subset E of the unit circle T but has unrestricted limit at each point of T \ E if and only if E is a closed set of measure zero.