{"title":"关于Blaschke乘积的一个边界性质","authors":"A. A. Danielyan, S. Pasias","doi":"10.1007/s10476-023-0212-8","DOIUrl":null,"url":null,"abstract":"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> \\ <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 2","pages":"403 - 408"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a boundary property of Blaschke products\",\"authors\":\"A. A. Danielyan, S. Pasias\",\"doi\":\"10.1007/s10476-023-0212-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> \\\\ <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"49 2\",\"pages\":\"403 - 408\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0212-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0212-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Blaschke product has no radial limits on a subset E of the unit circle T but has unrestricted limit at each point of T \ E if and only if E is a closed set of measure zero.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.