关于Blaschke乘积的一个边界性质

Pub Date : 2023-03-31 DOI:10.1007/s10476-023-0212-8
A. A. Danielyan, S. Pasias
{"title":"关于Blaschke乘积的一个边界性质","authors":"A. A. Danielyan,&nbsp;S. Pasias","doi":"10.1007/s10476-023-0212-8","DOIUrl":null,"url":null,"abstract":"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> \\ <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a boundary property of Blaschke products\",\"authors\":\"A. A. Danielyan,&nbsp;S. Pasias\",\"doi\":\"10.1007/s10476-023-0212-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Blaschke product has no radial limits on a subset <i>E</i> of the unit circle <i>T</i> but has unrestricted limit at each point of <i>T</i> \\\\ <i>E</i> if and only if <i>E</i> is a closed set of measure zero.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0212-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0212-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Blaschke乘积在单位圆T的子集E上没有径向极限,但在T\E的每个点上都有不受限制的极限,当且仅当E是测度零的闭集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a boundary property of Blaschke products

A Blaschke product has no radial limits on a subset E of the unit circle T but has unrestricted limit at each point of T \ E if and only if E is a closed set of measure zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信