{"title":"船用螺旋桨空化率和噪声声学的数值模拟","authors":"Kwanda Mercury Dlamini, V. Hashe, T. Kunene","doi":"10.3390/mca28020042","DOIUrl":null,"url":null,"abstract":"The study numerically investigated the noise dissipation, cavitation, output power, and energy produced by marine propellers. A Ffowcs Williams–Hawkings (FW–H) model was used to determine the effects of three different marine propellers with three to five blades and a fixed advancing ratio. The large-eddy Simulations model best predicted the turbulent structures’ spatial and temporal variation, which would better illustrate the flow physics. It was found that a high angle of incidence between the blade’s leading edge and the water flow direction typically causes the hub vortex to cavitate. The roll-up of the cavitating tip vortex was closely related to propeller noise. The five-blade propeller was quieter under the same dynamic conditions, such as the advancing ratio, compared to three- or four-blade propellers.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling of Cavitation Rates and Noise Acoustics of Marine Propellers\",\"authors\":\"Kwanda Mercury Dlamini, V. Hashe, T. Kunene\",\"doi\":\"10.3390/mca28020042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study numerically investigated the noise dissipation, cavitation, output power, and energy produced by marine propellers. A Ffowcs Williams–Hawkings (FW–H) model was used to determine the effects of three different marine propellers with three to five blades and a fixed advancing ratio. The large-eddy Simulations model best predicted the turbulent structures’ spatial and temporal variation, which would better illustrate the flow physics. It was found that a high angle of incidence between the blade’s leading edge and the water flow direction typically causes the hub vortex to cavitate. The roll-up of the cavitating tip vortex was closely related to propeller noise. The five-blade propeller was quieter under the same dynamic conditions, such as the advancing ratio, compared to three- or four-blade propellers.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28020042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
对船用螺旋桨产生的噪声消散、空化、输出功率和能量进行了数值研究。使用Ffowcs williams - hawkins (FW-H)模型来确定三种不同的船用螺旋桨(三到五个叶片,固定推进比)的效果。大涡模拟模型较好地预测了湍流结构的时空变化,较好地说明了流动物理。研究发现,叶片前缘与水流方向之间的大入射角通常会导致轮毂涡空化。空化尖端涡的卷起与螺旋桨噪声密切相关。与三叶或四叶螺旋桨相比,在相同的动力条件下,如推进比,五叶螺旋桨更安静。
Numerical Modeling of Cavitation Rates and Noise Acoustics of Marine Propellers
The study numerically investigated the noise dissipation, cavitation, output power, and energy produced by marine propellers. A Ffowcs Williams–Hawkings (FW–H) model was used to determine the effects of three different marine propellers with three to five blades and a fixed advancing ratio. The large-eddy Simulations model best predicted the turbulent structures’ spatial and temporal variation, which would better illustrate the flow physics. It was found that a high angle of incidence between the blade’s leading edge and the water flow direction typically causes the hub vortex to cavitate. The roll-up of the cavitating tip vortex was closely related to propeller noise. The five-blade propeller was quieter under the same dynamic conditions, such as the advancing ratio, compared to three- or four-blade propellers.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.