面向工业4.0的PoF物联网传感系统的实现

Q3 Engineering
L. C. Souza, E. S. Lima, E. R. Neto, Arismar Cerqueira Sodré Junior
{"title":"面向工业4.0的PoF物联网传感系统的实现","authors":"L. C. Souza, E. S. Lima, E. R. Neto, Arismar Cerqueira Sodré Junior","doi":"10.1590/2179-10742023v22i1270780","DOIUrl":null,"url":null,"abstract":"− We propose and experimentally investigate two distinct power-over-Fiber (PoF) approaches, aiming to remotely power Internet-of-Things (IoT) sensing systems for Industry 4.0 environments. The first proof-of-concept is focused on demonstrating a 1-W optical power transmission through a 50-m-fiber-optic link for powering an Arduino Uno, a temperature sensor (DS1820B), and a 433-MHz transceiver (FS1000A). The designed PoF link is able to provide up to 280 mW with power transmission efficiency (PTE) of 28.9%. The second implementation is based on a 100-m PoF link capable of transmitting over 0.6-W optical power and delivering 140-mW electrical power with PTE of 23%. In this scheme, an Arduino Pro Mini, another temperature sensor (LM35), and a 2.4-GHz transceiver (nRF24L01+) are employed. A voltage stability analysis enables to demonstrate that our PoF system is capable of delivering stable output voltage at 8.5 V and 5 V, with only 0.6% and 0.2% voltage fluctuations. In addition, an industrial oven is employed to evaluate the sensor performance considering temperature measurements from both sensing systems. The obtained results demonstrate that PoF might be considered as a","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of PoF-powered IoT Sensing Systems for Industry 4.0\",\"authors\":\"L. C. Souza, E. S. Lima, E. R. Neto, Arismar Cerqueira Sodré Junior\",\"doi\":\"10.1590/2179-10742023v22i1270780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"− We propose and experimentally investigate two distinct power-over-Fiber (PoF) approaches, aiming to remotely power Internet-of-Things (IoT) sensing systems for Industry 4.0 environments. The first proof-of-concept is focused on demonstrating a 1-W optical power transmission through a 50-m-fiber-optic link for powering an Arduino Uno, a temperature sensor (DS1820B), and a 433-MHz transceiver (FS1000A). The designed PoF link is able to provide up to 280 mW with power transmission efficiency (PTE) of 28.9%. The second implementation is based on a 100-m PoF link capable of transmitting over 0.6-W optical power and delivering 140-mW electrical power with PTE of 23%. In this scheme, an Arduino Pro Mini, another temperature sensor (LM35), and a 2.4-GHz transceiver (nRF24L01+) are employed. A voltage stability analysis enables to demonstrate that our PoF system is capable of delivering stable output voltage at 8.5 V and 5 V, with only 0.6% and 0.2% voltage fluctuations. In addition, an industrial oven is employed to evaluate the sensor performance considering temperature measurements from both sensing systems. The obtained results demonstrate that PoF might be considered as a\",\"PeriodicalId\":53567,\"journal\":{\"name\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2179-10742023v22i1270780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i1270780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

−我们提出并实验研究了两种不同的光纤供电(PoF)方法,旨在为工业4.0环境中的物联网(IoT)传感系统远程供电。第一个概念验证的重点是通过50米光纤链路演示1 w光功率传输,用于为Arduino Uno、温度传感器(DS1820B)和433 mhz收发器(FS1000A)供电。设计的PoF链路能够提供高达280兆瓦的功率,功率传输效率(PTE)为28.9%。第二种实现是基于100米PoF链路,能够传输超过0.6 w的光功率,并以23%的PTE传输140 mw的电力。本方案采用Arduino Pro Mini,另一个温度传感器(LM35)和2.4 ghz收发器(nRF24L01+)。电压稳定性分析表明,我们的PoF系统能够在8.5 V和5 V时提供稳定的输出电压,电压波动仅为0.6%和0.2%。此外,考虑两种传感系统的温度测量,采用工业烤箱来评估传感器的性能。得到的结果表明,PoF可以被认为是一种
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of PoF-powered IoT Sensing Systems for Industry 4.0
− We propose and experimentally investigate two distinct power-over-Fiber (PoF) approaches, aiming to remotely power Internet-of-Things (IoT) sensing systems for Industry 4.0 environments. The first proof-of-concept is focused on demonstrating a 1-W optical power transmission through a 50-m-fiber-optic link for powering an Arduino Uno, a temperature sensor (DS1820B), and a 433-MHz transceiver (FS1000A). The designed PoF link is able to provide up to 280 mW with power transmission efficiency (PTE) of 28.9%. The second implementation is based on a 100-m PoF link capable of transmitting over 0.6-W optical power and delivering 140-mW electrical power with PTE of 23%. In this scheme, an Arduino Pro Mini, another temperature sensor (LM35), and a 2.4-GHz transceiver (nRF24L01+) are employed. A voltage stability analysis enables to demonstrate that our PoF system is capable of delivering stable output voltage at 8.5 V and 5 V, with only 0.6% and 0.2% voltage fluctuations. In addition, an industrial oven is employed to evaluate the sensor performance considering temperature measurements from both sensing systems. The obtained results demonstrate that PoF might be considered as a
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信