纵向热毛细血管围绕一个稀的周期性的突出气泡垫滑动

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ehud Yariv;Toby L Kirk
{"title":"纵向热毛细血管围绕一个稀的周期性的突出气泡垫滑动","authors":"Ehud Yariv;Toby L Kirk","doi":"10.1093/imamat/hxab004","DOIUrl":null,"url":null,"abstract":"A common realization of superhydrophobic surfaces comprises of a periodic array of cylindrical bubbles which are trapped in a periodically grooved solid substrate. We consider the thermocapillary animation of liquid motion by a macroscopic temperature gradient which is longitudinally applied over such a bubble mattress. Assuming a linear variation of the interfacial tension with the temperature, at slope \n<tex>$\\sigma _T$</tex>\n, we seek the effective velocity slip attained by the liquid at large distances away from the mattress. We focus upon the dilute limit, where the groove width \n<tex>$2c$</tex>\n is small compared with the array period \n<tex>$2l$</tex>\n. The requisite velocity slip in the applied-gradient direction, determined by a local analysis about a single bubble, is provided by the approximation \n<tex>$$\\begin{align*}&amp; \\pi \\frac{G\\sigma_T c^2}{\\mu l} I(\\alpha), \\end{align*}$$</tex>\n wherein \n<tex>$G$</tex>\n is the applied-gradient magnitude, \n<tex>$\\mu $</tex>\n is the liquid viscosity and \n<tex>$I(\\alpha )$</tex>\n, a non-monotonic function of the protrusion angle \n<tex>$\\alpha $</tex>\n, is provided by the quadrature, \n<tex>$$\\begin{align*}&amp; I(\\alpha) = \\frac{2}{\\sin\\alpha} \\int_0^\\infty\\frac{\\sinh s\\alpha}{ \\cosh s(\\pi-\\alpha) \\sinh s \\pi} \\, \\textrm{d} s. \\end{align*}$$</tex>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imamat/hxab004","citationCount":"5","resultStr":"{\"title\":\"Longitudinal thermocapillary slip about a dilute periodic mattress of protruding bubbles\",\"authors\":\"Ehud Yariv;Toby L Kirk\",\"doi\":\"10.1093/imamat/hxab004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common realization of superhydrophobic surfaces comprises of a periodic array of cylindrical bubbles which are trapped in a periodically grooved solid substrate. We consider the thermocapillary animation of liquid motion by a macroscopic temperature gradient which is longitudinally applied over such a bubble mattress. Assuming a linear variation of the interfacial tension with the temperature, at slope \\n<tex>$\\\\sigma _T$</tex>\\n, we seek the effective velocity slip attained by the liquid at large distances away from the mattress. We focus upon the dilute limit, where the groove width \\n<tex>$2c$</tex>\\n is small compared with the array period \\n<tex>$2l$</tex>\\n. The requisite velocity slip in the applied-gradient direction, determined by a local analysis about a single bubble, is provided by the approximation \\n<tex>$$\\\\begin{align*}&amp; \\\\pi \\\\frac{G\\\\sigma_T c^2}{\\\\mu l} I(\\\\alpha), \\\\end{align*}$$</tex>\\n wherein \\n<tex>$G$</tex>\\n is the applied-gradient magnitude, \\n<tex>$\\\\mu $</tex>\\n is the liquid viscosity and \\n<tex>$I(\\\\alpha )$</tex>\\n, a non-monotonic function of the protrusion angle \\n<tex>$\\\\alpha $</tex>\\n, is provided by the quadrature, \\n<tex>$$\\\\begin{align*}&amp; I(\\\\alpha) = \\\\frac{2}{\\\\sin\\\\alpha} \\\\int_0^\\\\infty\\\\frac{\\\\sinh s\\\\alpha}{ \\\\cosh s(\\\\pi-\\\\alpha) \\\\sinh s \\\\pi} \\\\, \\\\textrm{d} s. \\\\end{align*}$$</tex>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imamat/hxab004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9514746/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514746/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

超疏水表面的一种常见实现包括捕获在周期性槽状固体衬底中的圆柱形气泡的周期性阵列。我们考虑了液体运动的热毛细动画的宏观温度梯度,这是纵向施加在这种气泡床垫。假设界面张力随温度呈线性变化,斜率为$\sigma _T$,我们寻求液体在远离床垫很远的地方获得的有效速度滑移。我们将重点放在稀释极限上,其中槽宽$2c$与阵列周期$2l$相比较小。在施加梯度方向上所需的速度滑移,由对单个气泡的局部分析确定,由近似$$\begin{align*}& \pi \frac{G\sigma_T c^2}{\mu l} I(\alpha), \end{align*}$$提供,其中$G$是施加梯度幅度,$\mu $是液体粘度,$I(\alpha )$是突出角$\alpha $的非单调函数,由正交函数提供。 $$\begin{align*}& I(\alpha) = \frac{2}{\sin\alpha} \int_0^\infty\frac{\sinh s\alpha}{ \cosh s(\pi-\alpha) \sinh s \pi} \, \textrm{d} s. \end{align*}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal thermocapillary slip about a dilute periodic mattress of protruding bubbles
A common realization of superhydrophobic surfaces comprises of a periodic array of cylindrical bubbles which are trapped in a periodically grooved solid substrate. We consider the thermocapillary animation of liquid motion by a macroscopic temperature gradient which is longitudinally applied over such a bubble mattress. Assuming a linear variation of the interfacial tension with the temperature, at slope $\sigma _T$ , we seek the effective velocity slip attained by the liquid at large distances away from the mattress. We focus upon the dilute limit, where the groove width $2c$ is small compared with the array period $2l$ . The requisite velocity slip in the applied-gradient direction, determined by a local analysis about a single bubble, is provided by the approximation $$\begin{align*}& \pi \frac{G\sigma_T c^2}{\mu l} I(\alpha), \end{align*}$$ wherein $G$ is the applied-gradient magnitude, $\mu $ is the liquid viscosity and $I(\alpha )$ , a non-monotonic function of the protrusion angle $\alpha $ , is provided by the quadrature, $$\begin{align*}& I(\alpha) = \frac{2}{\sin\alpha} \int_0^\infty\frac{\sinh s\alpha}{ \cosh s(\pi-\alpha) \sinh s \pi} \, \textrm{d} s. \end{align*}$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信