关于模糊子群与逆半群的$F$-逆覆盖之间的联系

Q3 Mathematics
Elton Pasku
{"title":"关于模糊子群与逆半群的$F$-逆覆盖之间的联系","authors":"Elton Pasku","doi":"10.30755/nsjom.12394","DOIUrl":null,"url":null,"abstract":"We define two categories, the category $\\mathfrak{F}\\mathfrak{G}$ of fuzzy subgroups, and the category $\\mathfrak{F}\\mathfrak{C}$ of $F$-inverse covers of inverse monoids, and prove that $\\mathfrak{F}\\mathfrak{G}$ fully embeds into $\\mathfrak{F}\\mathfrak{C}$. This shows that, at least from a categorical viewpoint, fuzzy subgroups belong to the standard mathematics as much as they do to the fuzzy one.","PeriodicalId":38723,"journal":{"name":"Novi Sad Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a connection between fuzzy subgroups and $F$-inverse covers of inverse monoids\",\"authors\":\"Elton Pasku\",\"doi\":\"10.30755/nsjom.12394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define two categories, the category $\\\\mathfrak{F}\\\\mathfrak{G}$ of fuzzy subgroups, and the category $\\\\mathfrak{F}\\\\mathfrak{C}$ of $F$-inverse covers of inverse monoids, and prove that $\\\\mathfrak{F}\\\\mathfrak{G}$ fully embeds into $\\\\mathfrak{F}\\\\mathfrak{C}$. This shows that, at least from a categorical viewpoint, fuzzy subgroups belong to the standard mathematics as much as they do to the fuzzy one.\",\"PeriodicalId\":38723,\"journal\":{\"name\":\"Novi Sad Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novi Sad Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30755/nsjom.12394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novi Sad Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30755/nsjom.12394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了两个范畴,模糊子群的范畴$\mathfrak{F}\mathfrak{G}$和逆幺半群的$F$逆覆盖的范畴$\athfrak{F}\math frak{C}$,并证明了$\mathfrak{F}\mathfrak{G}$完全嵌入到$\mathfrak{F}\mathfrak-{C}$中。这表明,至少从范畴的角度来看,模糊子群与模糊子群一样属于标准数学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a connection between fuzzy subgroups and $F$-inverse covers of inverse monoids
We define two categories, the category $\mathfrak{F}\mathfrak{G}$ of fuzzy subgroups, and the category $\mathfrak{F}\mathfrak{C}$ of $F$-inverse covers of inverse monoids, and prove that $\mathfrak{F}\mathfrak{G}$ fully embeds into $\mathfrak{F}\mathfrak{C}$. This shows that, at least from a categorical viewpoint, fuzzy subgroups belong to the standard mathematics as much as they do to the fuzzy one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Novi Sad Journal of Mathematics
Novi Sad Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信