稀疏状态下持久图的收敛性

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Takashi Owada
{"title":"稀疏状态下持久图的收敛性","authors":"Takashi Owada","doi":"10.1214/22-aap1800","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to examine the asymptotic behavior of persistence diagrams associated with Čech filtration. A persistence diagram is a graphical descriptor of a topological and algebraic structure of geometric objects. We consider Čech filtration over a scaled random sample r−1 n Xn = {r−1 n X1, . . . , r−1 n Xn}, such that rn → 0 as n → ∞. We treat persistence diagrams as a point process and establish their limit theorems in the sparse regime: nr n → 0, n → ∞. In this setting, we show that the asymptotics of the kth persistence diagram depends on the limit value of the sequence nr d(k+1) n . If n r d(k+1) n → ∞, the scaled persistence diagram converges to a deterministic Radon measure almost surely in the vague metric. If rn decays faster so that nr d(k+1) n → c ∈ (0,∞), the persistence diagram weakly converges to a limiting point process without normalization. Finally, if nr d(k+1) n → 0, the sequence of probability distributions of a persistence diagram should be normalized, and the resulting convergence will be treated in terms of the M0-topology.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Convergence of persistence diagram in the sparse regime\",\"authors\":\"Takashi Owada\",\"doi\":\"10.1214/22-aap1800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to examine the asymptotic behavior of persistence diagrams associated with Čech filtration. A persistence diagram is a graphical descriptor of a topological and algebraic structure of geometric objects. We consider Čech filtration over a scaled random sample r−1 n Xn = {r−1 n X1, . . . , r−1 n Xn}, such that rn → 0 as n → ∞. We treat persistence diagrams as a point process and establish their limit theorems in the sparse regime: nr n → 0, n → ∞. In this setting, we show that the asymptotics of the kth persistence diagram depends on the limit value of the sequence nr d(k+1) n . If n r d(k+1) n → ∞, the scaled persistence diagram converges to a deterministic Radon measure almost surely in the vague metric. If rn decays faster so that nr d(k+1) n → c ∈ (0,∞), the persistence diagram weakly converges to a limiting point process without normalization. Finally, if nr d(k+1) n → 0, the sequence of probability distributions of a persistence diagram should be normalized, and the resulting convergence will be treated in terms of the M0-topology.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1800\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1800","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

摘要

本文的目的是研究与Čech过滤相关的持续图的渐近行为。持久性图是几何对象的拓扑和代数结构的图形描述符。我们考虑Čech过滤在一个缩放的随机样本r−1 n Xn = {r−1 n X1,…, r−1 n Xn},使得rn→0 = n→∞。我们将持久性图视为一个点过程,并建立了其在稀疏域的极限定理:nr n→0,n→∞。在这种情况下,我们证明了第k个持续图的渐近性取决于序列nr d(k+1) n的极限值。当n r d(k+1) n→∞时,尺度持续图在模糊度量中几乎肯定收敛于确定性Radon测度。如果rn衰减较快,使得nr d(k+1) n→c∈(0,∞),则持久性图弱收敛到一个不归一化的极限点过程。最后,如果nr d(k+1) n→0,则持久性图的概率分布序列应归一化,并根据m0拓扑处理由此产生的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of persistence diagram in the sparse regime
The objective of this paper is to examine the asymptotic behavior of persistence diagrams associated with Čech filtration. A persistence diagram is a graphical descriptor of a topological and algebraic structure of geometric objects. We consider Čech filtration over a scaled random sample r−1 n Xn = {r−1 n X1, . . . , r−1 n Xn}, such that rn → 0 as n → ∞. We treat persistence diagrams as a point process and establish their limit theorems in the sparse regime: nr n → 0, n → ∞. In this setting, we show that the asymptotics of the kth persistence diagram depends on the limit value of the sequence nr d(k+1) n . If n r d(k+1) n → ∞, the scaled persistence diagram converges to a deterministic Radon measure almost surely in the vague metric. If rn decays faster so that nr d(k+1) n → c ∈ (0,∞), the persistence diagram weakly converges to a limiting point process without normalization. Finally, if nr d(k+1) n → 0, the sequence of probability distributions of a persistence diagram should be normalized, and the resulting convergence will be treated in terms of the M0-topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信