缩放哈密顿量

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Connes, C. Consani
{"title":"缩放哈密顿量","authors":"A. Connes, C. Consani","doi":"10.7900/jot.2019oct30.2265","DOIUrl":null,"url":null,"abstract":"We reconcile, at the semi-classical level, the original spectral realization of zeros of the Riemann zeta function as an ``absorption'' picture using the ad\\`ele class space, with the ``emission'' semi-classical computations of Berry and Keating. We then use the quantized calculus to analyse the recent attempt of X.-J.~Li at proving Weil's positivity, and explain its limit. Finally, we propose an operator theoretic semi-local framework directly related to the Riemann hypothesis.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The scaling Hamiltonian\",\"authors\":\"A. Connes, C. Consani\",\"doi\":\"10.7900/jot.2019oct30.2265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reconcile, at the semi-classical level, the original spectral realization of zeros of the Riemann zeta function as an ``absorption'' picture using the ad\\\\`ele class space, with the ``emission'' semi-classical computations of Berry and Keating. We then use the quantized calculus to analyse the recent attempt of X.-J.~Li at proving Weil's positivity, and explain its limit. Finally, we propose an operator theoretic semi-local framework directly related to the Riemann hypothesis.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2019oct30.2265\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019oct30.2265","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

在半经典水平上,我们将Riemann-zeta函数的零点的原始谱实现与Berry和Keating的“发射”半经典计算调和为使用ad类空间的“吸收”图。然后,我们用量子化的微积分分析了李最近在证明Weil正性方面的尝试,并解释了它的极限。最后,我们提出了一个与黎曼假说直接相关的算子理论半局部框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The scaling Hamiltonian
We reconcile, at the semi-classical level, the original spectral realization of zeros of the Riemann zeta function as an ``absorption'' picture using the ad\`ele class space, with the ``emission'' semi-classical computations of Berry and Keating. We then use the quantized calculus to analyse the recent attempt of X.-J.~Li at proving Weil's positivity, and explain its limit. Finally, we propose an operator theoretic semi-local framework directly related to the Riemann hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信