具有Hardy-Littlewood-Sobolev临界指数的p分数阶Schrödinger-Choquard-Kirchhoff方程的多重解

IF 2.1 2区 数学 Q1 MATHEMATICS
Xiaolu Lin, Shenzhou Zheng, Z. Feng
{"title":"具有Hardy-Littlewood-Sobolev临界指数的p分数阶Schrödinger-Choquard-Kirchhoff方程的多重解","authors":"Xiaolu Lin, Shenzhou Zheng, Z. Feng","doi":"10.1515/ans-2022-0059","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with multiple solutions of Schrödinger-Choquard-Kirchhoff equations involving the fractional p p -Laplacian and Hardy-Littlewood-Sobolev critical exponents in R N {{\\mathbb{R}}}^{N} . We classify the multiplicity of the solutions in accordance with the Kirchhoff term M ( ⋅ ) M\\left(\\cdot ) and different ranges of q q shown in the nonlinearity f ( x , ⋅ ) f\\left(x,\\cdot ) by means of the variational methods and Krasnoselskii’s genus theory. As an immediate consequence, some recent related results have been improved and extended.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple solutions of p-fractional Schrödinger-Choquard-Kirchhoff equations with Hardy-Littlewood-Sobolev critical exponents\",\"authors\":\"Xiaolu Lin, Shenzhou Zheng, Z. Feng\",\"doi\":\"10.1515/ans-2022-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are concerned with multiple solutions of Schrödinger-Choquard-Kirchhoff equations involving the fractional p p -Laplacian and Hardy-Littlewood-Sobolev critical exponents in R N {{\\\\mathbb{R}}}^{N} . We classify the multiplicity of the solutions in accordance with the Kirchhoff term M ( ⋅ ) M\\\\left(\\\\cdot ) and different ranges of q q shown in the nonlinearity f ( x , ⋅ ) f\\\\left(x,\\\\cdot ) by means of the variational methods and Krasnoselskii’s genus theory. As an immediate consequence, some recent related results have been improved and extended.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0059\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本文中,我们讨论了R N{\mathbb{R}}^{N}中包含分数阶p-拉普拉斯和Hardy-Littlewood-Sobolev临界指数的Schrödinger-Choquard-Kirchhoff方程的多重解。利用变分方法和Krasnoselskii亏格理论,根据Kirchhoff项M(‧)M\left(\cdot)和非线性f(x,‧)f\left(x,\cdot。因此,最近的一些相关成果得到了改进和推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions of p-fractional Schrödinger-Choquard-Kirchhoff equations with Hardy-Littlewood-Sobolev critical exponents
Abstract In this article, we are concerned with multiple solutions of Schrödinger-Choquard-Kirchhoff equations involving the fractional p p -Laplacian and Hardy-Littlewood-Sobolev critical exponents in R N {{\mathbb{R}}}^{N} . We classify the multiplicity of the solutions in accordance with the Kirchhoff term M ( ⋅ ) M\left(\cdot ) and different ranges of q q shown in the nonlinearity f ( x , ⋅ ) f\left(x,\cdot ) by means of the variational methods and Krasnoselskii’s genus theory. As an immediate consequence, some recent related results have been improved and extended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信