离散矩阵上的积分几何

Q3 Mathematics
Abdelbaki Attioui
{"title":"离散矩阵上的积分几何","authors":"Abdelbaki Attioui","doi":"10.2478/mjpaa-2021-0024","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we study the Radon transform and its dual on the discrete matrices by defining hyperplanes as being infinite sets of solutions of linear Diophantine equations. We then give an inversion formula and a support theorem.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"364 - 374"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral geometry on discrete matrices\",\"authors\":\"Abdelbaki Attioui\",\"doi\":\"10.2478/mjpaa-2021-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we study the Radon transform and its dual on the discrete matrices by defining hyperplanes as being infinite sets of solutions of linear Diophantine equations. We then give an inversion formula and a support theorem.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"7 1\",\"pages\":\"364 - 374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2021-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们通过将超平面定义为线性丢番图方程的无限组解,研究了离散矩阵上的Radon变换及其对偶。然后我们给出了一个反演公式和一个支持定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral geometry on discrete matrices
Abstract In this note, we study the Radon transform and its dual on the discrete matrices by defining hyperplanes as being infinite sets of solutions of linear Diophantine equations. We then give an inversion formula and a support theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信