最小变量决定和TELBS方法的试剂回归参数

Ni Ketut, Zelina Yeriska, Gusti Ayu Made Srinadi, I. Komang, Gde Sukarsa
{"title":"最小变量决定和TELBS方法的试剂回归参数","authors":"Ni Ketut, Zelina Yeriska, Gusti Ayu Made Srinadi, I. Komang, Gde Sukarsa","doi":"10.24843/mtk.2023.v12.i02.p410","DOIUrl":null,"url":null,"abstract":"The parameter estimator on the regression model can be obtained through the ordinary least square (OLS). When there are outliers in the data, OLS cannot be applied because it will produce an unbiased estimator that is not the best linear estimator. Another alternative to addressing the presence of outlier data without deleting the data is robust regression. Robust regression methods include the minimum covariance determinant (MCD) and the TELBS method. This study aims to determine the estimation of regression parameters produced using the MCD and TELBS methods when entering outlier data. The data used are simulation data with various levels of outliers, namely 5%, 10%, and 20%. The outliers inserted are the outliers on variable X, variable Y, and variables X and Y. The result of this study is that the robust regression methods of MCD and TELBS both produce unbiased parameter estimators when there are outlier data.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENDUGAAN PARAMETER REGRESI ROBUST METODE MINIMUM COVARIANCE DETERMINANT DAN METODE TELBS\",\"authors\":\"Ni Ketut, Zelina Yeriska, Gusti Ayu Made Srinadi, I. Komang, Gde Sukarsa\",\"doi\":\"10.24843/mtk.2023.v12.i02.p410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parameter estimator on the regression model can be obtained through the ordinary least square (OLS). When there are outliers in the data, OLS cannot be applied because it will produce an unbiased estimator that is not the best linear estimator. Another alternative to addressing the presence of outlier data without deleting the data is robust regression. Robust regression methods include the minimum covariance determinant (MCD) and the TELBS method. This study aims to determine the estimation of regression parameters produced using the MCD and TELBS methods when entering outlier data. The data used are simulation data with various levels of outliers, namely 5%, 10%, and 20%. The outliers inserted are the outliers on variable X, variable Y, and variables X and Y. The result of this study is that the robust regression methods of MCD and TELBS both produce unbiased parameter estimators when there are outlier data.\",\"PeriodicalId\":11600,\"journal\":{\"name\":\"E-Jurnal Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-Jurnal Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/mtk.2023.v12.i02.p410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2023.v12.i02.p410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回归模型上的参数估计量可以通过普通最小二乘法得到。当数据中存在异常值时,OLS不能应用,因为它会产生一个无偏估计量,而不是最好的线性估计量。在不删除数据的情况下解决异常数据存在的另一种选择是稳健回归。稳健回归方法包括最小协方差行列式(MCD)和TELBS方法。本研究旨在确定在输入异常数据时使用MCD和TELBS方法产生的回归参数的估计。所使用的数据是具有不同水平异常值的模拟数据,即5%、10%和20%。插入的异常值是变量X、变量Y以及变量X和Y上的异常值。本研究的结果是,当存在异常值数据时,MCD和TELBS的稳健回归方法都产生了无偏的参数估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENDUGAAN PARAMETER REGRESI ROBUST METODE MINIMUM COVARIANCE DETERMINANT DAN METODE TELBS
The parameter estimator on the regression model can be obtained through the ordinary least square (OLS). When there are outliers in the data, OLS cannot be applied because it will produce an unbiased estimator that is not the best linear estimator. Another alternative to addressing the presence of outlier data without deleting the data is robust regression. Robust regression methods include the minimum covariance determinant (MCD) and the TELBS method. This study aims to determine the estimation of regression parameters produced using the MCD and TELBS methods when entering outlier data. The data used are simulation data with various levels of outliers, namely 5%, 10%, and 20%. The outliers inserted are the outliers on variable X, variable Y, and variables X and Y. The result of this study is that the robust regression methods of MCD and TELBS both produce unbiased parameter estimators when there are outlier data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信