D. Butenkov, A.V. Bakaeva, K. Runina, I. Krol, Maria Uslamina, A. Pynenkov, O. Petrova, I. Avetissov
{"title":"PbCl2–PbO–B2O3体系中的新型玻璃:结构和光学性质","authors":"D. Butenkov, A.V. Bakaeva, K. Runina, I. Krol, Maria Uslamina, A. Pynenkov, O. Petrova, I. Avetissov","doi":"10.3390/ceramics6030083","DOIUrl":null,"url":null,"abstract":"New oxychloride lead borate glasses in the xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 system were synthesized with a maximum lead chloride content of 40 mol%. The characteristic temperatures and mechanical and optical properties were studied. The incorporation of lead chloride led to a significant expansion of the transparency range in the UV (up to 355 nm) and IR regions (up to 4710 nm). Decreases in the Vickers hardness, density, and glass transition temperature were the consequences of a change in the structure. The studied glasses are promising materials for photonics and IR optics. The structure of the PbCl2–PbO–B2O3 system was analyzed in detail using vibrational spectroscopy and X-ray diffraction.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Glasses in the PbCl2–PbO–B2O3 System: Structure and Optical Properties\",\"authors\":\"D. Butenkov, A.V. Bakaeva, K. Runina, I. Krol, Maria Uslamina, A. Pynenkov, O. Petrova, I. Avetissov\",\"doi\":\"10.3390/ceramics6030083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New oxychloride lead borate glasses in the xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 system were synthesized with a maximum lead chloride content of 40 mol%. The characteristic temperatures and mechanical and optical properties were studied. The incorporation of lead chloride led to a significant expansion of the transparency range in the UV (up to 355 nm) and IR regions (up to 4710 nm). Decreases in the Vickers hardness, density, and glass transition temperature were the consequences of a change in the structure. The studied glasses are promising materials for photonics and IR optics. The structure of the PbCl2–PbO–B2O3 system was analyzed in detail using vibrational spectroscopy and X-ray diffraction.\",\"PeriodicalId\":33263,\"journal\":{\"name\":\"Ceramics-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics-Switzerland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ceramics6030083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6030083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
New Glasses in the PbCl2–PbO–B2O3 System: Structure and Optical Properties
New oxychloride lead borate glasses in the xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 system were synthesized with a maximum lead chloride content of 40 mol%. The characteristic temperatures and mechanical and optical properties were studied. The incorporation of lead chloride led to a significant expansion of the transparency range in the UV (up to 355 nm) and IR regions (up to 4710 nm). Decreases in the Vickers hardness, density, and glass transition temperature were the consequences of a change in the structure. The studied glasses are promising materials for photonics and IR optics. The structure of the PbCl2–PbO–B2O3 system was analyzed in detail using vibrational spectroscopy and X-ray diffraction.