Hilton—Spencer循环定理与Katona的阴影交定理

IF 0.5 4区 数学 Q3 MATHEMATICS
P. Borg, Carl Feghali
{"title":"Hilton—Spencer循环定理与Katona的阴影交定理","authors":"P. Borg, Carl Feghali","doi":"10.7151/dmgt.2365","DOIUrl":null,"url":null,"abstract":"Abstract A family 𝒜 of sets is said to be intersecting if every two sets in 𝒜 intersect. An intersecting family is said to be trivial if its sets have a common element. A graph G is said to be r-EKR if at least one of the largest intersecting families of independent r-element sets of G is trivial. Let α (G) and ω (G) denote the independence number and the clique number of G, respectively. Hilton and Spencer recently showed that if G is the vertex-disjoint union of a cycle C raised to the power k and s cycles 1C, . . ., sC raised to the powers k1, . . ., ks, respectively, 1 ≤ r ≤ α (G), and min(ω(C1k1),…,ω(Csks))≥ω(Ck), \\min \\left( {\\omega \\left( {{}_1{C^{k1}}} \\right), \\ldots ,\\omega \\left( {{}_s{C^{ks}}} \\right)} \\right) \\ge \\omega \\left( {{C^k}} \\right), then G is r-EKR. They had shown that the same holds if C is replaced by a path P and the condition on the clique numbers is relaxed to min(ω(C1k1),…,ω(Csks))≥ω(Pk), \\min \\left( {\\omega \\left( {{}_1{C^{k1}}} \\right), \\ldots ,\\omega \\left( {{}_s{C^{ks}}} \\right)} \\right) \\ge \\omega \\left( {{P^k}} \\right), We use the classical Shadow Intersection Theorem of Katona to obtain a significantly shorter proof of each result for the case where the inequality for the minimum clique number is strict.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"43 1","pages":"277 - 286"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hilton-Spencer Cycle Theorems Via Katona’s Shadow Intersection Theorem\",\"authors\":\"P. Borg, Carl Feghali\",\"doi\":\"10.7151/dmgt.2365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A family 𝒜 of sets is said to be intersecting if every two sets in 𝒜 intersect. An intersecting family is said to be trivial if its sets have a common element. A graph G is said to be r-EKR if at least one of the largest intersecting families of independent r-element sets of G is trivial. Let α (G) and ω (G) denote the independence number and the clique number of G, respectively. Hilton and Spencer recently showed that if G is the vertex-disjoint union of a cycle C raised to the power k and s cycles 1C, . . ., sC raised to the powers k1, . . ., ks, respectively, 1 ≤ r ≤ α (G), and min(ω(C1k1),…,ω(Csks))≥ω(Ck), \\\\min \\\\left( {\\\\omega \\\\left( {{}_1{C^{k1}}} \\\\right), \\\\ldots ,\\\\omega \\\\left( {{}_s{C^{ks}}} \\\\right)} \\\\right) \\\\ge \\\\omega \\\\left( {{C^k}} \\\\right), then G is r-EKR. They had shown that the same holds if C is replaced by a path P and the condition on the clique numbers is relaxed to min(ω(C1k1),…,ω(Csks))≥ω(Pk), \\\\min \\\\left( {\\\\omega \\\\left( {{}_1{C^{k1}}} \\\\right), \\\\ldots ,\\\\omega \\\\left( {{}_s{C^{ks}}} \\\\right)} \\\\right) \\\\ge \\\\omega \\\\left( {{P^k}} \\\\right), We use the classical Shadow Intersection Theorem of Katona to obtain a significantly shorter proof of each result for the case where the inequality for the minimum clique number is strict.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"43 1\",\"pages\":\"277 - 286\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2365\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2365","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果一个集合族中的每两个集合都是相交的,就说它们是相交的。如果一个相交族的集合有一个公共元素,我们就说它是平凡族。如果图G的独立的r元素集合的最大相交族中至少有一个是平凡的,则称图G为r-EKR。设α (G)和ω (G)分别表示G的独立数和团数。Hilton和Spencer最近证明,如果G是一个循环C的k次方和s个循环1C,…,sC的k1,…,ks次方的顶点不相交并,分别为1≤r≤α (G),并且min(ω(C1k1),…,ω(Csks))≥ω(Ck), \min\left ({\omega\left (_1C^k1 {{}{{}}}\right), \ldots,\omega\left (_sC^ks {{}{{}}}\right) }\right) \ge\omega\left (C^k {{}}\right),则G为r-EKR。他们已经证明,如果用路径P代替C,并且将团数的条件放宽为min(ω(C1k1),…,ω(Csks))≥ω(Pk), \min\left ({\omega\left (_1C^k1 {{}{{}}}\right), \ldots, \omega\left (_sC^ks {{}{{}}}\right) }\right) \ge\omega\left (P ^k {{}}\right),对于最小团数不等式严格的情况,我们利用经典的卡托纳阴影交定理,得到了每个结果的较短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hilton-Spencer Cycle Theorems Via Katona’s Shadow Intersection Theorem
Abstract A family 𝒜 of sets is said to be intersecting if every two sets in 𝒜 intersect. An intersecting family is said to be trivial if its sets have a common element. A graph G is said to be r-EKR if at least one of the largest intersecting families of independent r-element sets of G is trivial. Let α (G) and ω (G) denote the independence number and the clique number of G, respectively. Hilton and Spencer recently showed that if G is the vertex-disjoint union of a cycle C raised to the power k and s cycles 1C, . . ., sC raised to the powers k1, . . ., ks, respectively, 1 ≤ r ≤ α (G), and min(ω(C1k1),…,ω(Csks))≥ω(Ck), \min \left( {\omega \left( {{}_1{C^{k1}}} \right), \ldots ,\omega \left( {{}_s{C^{ks}}} \right)} \right) \ge \omega \left( {{C^k}} \right), then G is r-EKR. They had shown that the same holds if C is replaced by a path P and the condition on the clique numbers is relaxed to min(ω(C1k1),…,ω(Csks))≥ω(Pk), \min \left( {\omega \left( {{}_1{C^{k1}}} \right), \ldots ,\omega \left( {{}_s{C^{ks}}} \right)} \right) \ge \omega \left( {{P^k}} \right), We use the classical Shadow Intersection Theorem of Katona to obtain a significantly shorter proof of each result for the case where the inequality for the minimum clique number is strict.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信