Carlos J.G. Rojas, Jos L. Boldrini, Marco L. Bittencourt
{"title":"基于物理信息神经网络的损伤相场模型参数辨识","authors":"Carlos J.G. Rojas, Jos L. Boldrini, Marco L. Bittencourt","doi":"10.1016/j.taml.2023.100450","DOIUrl":null,"url":null,"abstract":"<div><p>This work applies concepts of artificial neural networks to identify the parameters of a mathematical model based on phase fields for damage and fracture. Damage mechanics is the part of the continuum mechanics that models the effects of micro-defect formation using state variables at the macroscopic level. The equations that define the model are derived from fundamental laws of physics and provide important relationships among state variables. Simulations using the model considered in this work produce good qualitative and quantitative results, but many parameters must be adjusted to reproduce certain material behavior. The identification of model parameters is considered by solving an inverse problem that uses pseudo-experimental data to find the best values that fit the data. We apply physics informed neural network and combine some classical estimation methods to identify the material parameters that appear in the damage equation of the model. Our strategy consists of a neural network that acts as an approximating function of the damage evolution with output regularized using the residue of the differential equation. Three stages of optimization seek the best possible values for the neural network and the material parameters. The training alternates between the fitting of only the pseudo-experimental data or the total loss that includes the regularizing terms. We test the robustness of the method to noisy data and its generalization capabilities using a simple physical case for the damage model. This procedure deals better with noisy data in comparison with a more standard PDE-constrained optimization method, and it also provides good approximations of the material parameters and the evolution of damage.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameter identification for a damage phase field model using a physics-informed neural network\",\"authors\":\"Carlos J.G. Rojas, Jos L. Boldrini, Marco L. Bittencourt\",\"doi\":\"10.1016/j.taml.2023.100450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work applies concepts of artificial neural networks to identify the parameters of a mathematical model based on phase fields for damage and fracture. Damage mechanics is the part of the continuum mechanics that models the effects of micro-defect formation using state variables at the macroscopic level. The equations that define the model are derived from fundamental laws of physics and provide important relationships among state variables. Simulations using the model considered in this work produce good qualitative and quantitative results, but many parameters must be adjusted to reproduce certain material behavior. The identification of model parameters is considered by solving an inverse problem that uses pseudo-experimental data to find the best values that fit the data. We apply physics informed neural network and combine some classical estimation methods to identify the material parameters that appear in the damage equation of the model. Our strategy consists of a neural network that acts as an approximating function of the damage evolution with output regularized using the residue of the differential equation. Three stages of optimization seek the best possible values for the neural network and the material parameters. The training alternates between the fitting of only the pseudo-experimental data or the total loss that includes the regularizing terms. We test the robustness of the method to noisy data and its generalization capabilities using a simple physical case for the damage model. This procedure deals better with noisy data in comparison with a more standard PDE-constrained optimization method, and it also provides good approximations of the material parameters and the evolution of damage.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000211\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000211","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Parameter identification for a damage phase field model using a physics-informed neural network
This work applies concepts of artificial neural networks to identify the parameters of a mathematical model based on phase fields for damage and fracture. Damage mechanics is the part of the continuum mechanics that models the effects of micro-defect formation using state variables at the macroscopic level. The equations that define the model are derived from fundamental laws of physics and provide important relationships among state variables. Simulations using the model considered in this work produce good qualitative and quantitative results, but many parameters must be adjusted to reproduce certain material behavior. The identification of model parameters is considered by solving an inverse problem that uses pseudo-experimental data to find the best values that fit the data. We apply physics informed neural network and combine some classical estimation methods to identify the material parameters that appear in the damage equation of the model. Our strategy consists of a neural network that acts as an approximating function of the damage evolution with output regularized using the residue of the differential equation. Three stages of optimization seek the best possible values for the neural network and the material parameters. The training alternates between the fitting of only the pseudo-experimental data or the total loss that includes the regularizing terms. We test the robustness of the method to noisy data and its generalization capabilities using a simple physical case for the damage model. This procedure deals better with noisy data in comparison with a more standard PDE-constrained optimization method, and it also provides good approximations of the material parameters and the evolution of damage.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).