具有可选服务和工作故障的\(M^{[X]}/G/1\)队列

Q3 Mathematics
B. Somasudaram, S. Karpagam, R. Lokesh, A. Kavin, Sagana Mary
{"title":"具有可选服务和工作故障的\\(M^{[X]}/G/1\\)队列","authors":"B. Somasudaram, S. Karpagam, R. Lokesh, A. Kavin, Sagana Mary","doi":"10.15826/umj.2023.1.015","DOIUrl":null,"url":null,"abstract":"In this study, a batch arrival single service queue with two stages of service (second stage is optional) and working breakdown is investigated. When the system is in operation, it may breakdown at any time. During breakdown period, instead of terminating the service totally, it continues at a slower rate. We find the time-dependent probability generating functions in terms of their Laplace transforms and derive explicitly the corresponding steady state results. Furthermore, numerous measures indicating system performances, such as the average queue size and the average queue waiting time, has been obtained. Some of the numerical results and graphical representations were also presented.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN \\\\(M^{[X]}/G/1\\\\) QUEUE WITH OPTIONAL SERVICE AND WORKING BREAKDOWN\",\"authors\":\"B. Somasudaram, S. Karpagam, R. Lokesh, A. Kavin, Sagana Mary\",\"doi\":\"10.15826/umj.2023.1.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a batch arrival single service queue with two stages of service (second stage is optional) and working breakdown is investigated. When the system is in operation, it may breakdown at any time. During breakdown period, instead of terminating the service totally, it continues at a slower rate. We find the time-dependent probability generating functions in terms of their Laplace transforms and derive explicitly the corresponding steady state results. Furthermore, numerous measures indicating system performances, such as the average queue size and the average queue waiting time, has been obtained. Some of the numerical results and graphical representations were also presented.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2023.1.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2023.1.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个具有两阶段服务(第二阶段可选)和工作故障的批量到达单服务队列。系统在运行过程中,随时可能发生故障。在故障期间,不是完全终止服务,而是以较慢的速率继续服务。我们根据它们的拉普拉斯变换找到了随时间变化的概率生成函数,并明确地推导出相应的稳态结果。此外,还获得了许多指示系统性能的度量,例如平均队列大小和平均队列等待时间。给出了部分数值结果和图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN \(M^{[X]}/G/1\) QUEUE WITH OPTIONAL SERVICE AND WORKING BREAKDOWN
In this study, a batch arrival single service queue with two stages of service (second stage is optional) and working breakdown is investigated. When the system is in operation, it may breakdown at any time. During breakdown period, instead of terminating the service totally, it continues at a slower rate. We find the time-dependent probability generating functions in terms of their Laplace transforms and derive explicitly the corresponding steady state results. Furthermore, numerous measures indicating system performances, such as the average queue size and the average queue waiting time, has been obtained. Some of the numerical results and graphical representations were also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信