Qingbo Yu, Huiqin Li, Kuan Yang, Qixiang Xu, Xianhua Li
{"title":"构建具有协同性能的高光催化性能C/g-C3N4","authors":"Qingbo Yu, Huiqin Li, Kuan Yang, Qixiang Xu, Xianhua Li","doi":"10.1504/IJNM.2021.10035746","DOIUrl":null,"url":null,"abstract":"Aromatic carbon (C) doped graphitic carbon nitride (g-C3N4) is one of the effective strategies to improve the photocatalytic performance of g-C3N4. The present work developed a feasible method to construct C/g-C3N4 through carbonising the mixture of g-C3N4 and phenol-formaldehyde (PF) obtained in situ polymerisation. This synthesis method not only improves the interaction between PF and g-C3N4, but also promotes the preparation of aromatic carbon-doped g-C3N4 in the subsequent calcinations process. The resulted C/g-C3N4-600 catalysts show developed optoelectronic properties, superior photocatalytic activity and higher surface area (1336 cm2 g-1) due to the extended π-conjugation system and distinctive morphology.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction C/g-C3N4 with synergistic performance toward high photocatalytic performance\",\"authors\":\"Qingbo Yu, Huiqin Li, Kuan Yang, Qixiang Xu, Xianhua Li\",\"doi\":\"10.1504/IJNM.2021.10035746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aromatic carbon (C) doped graphitic carbon nitride (g-C3N4) is one of the effective strategies to improve the photocatalytic performance of g-C3N4. The present work developed a feasible method to construct C/g-C3N4 through carbonising the mixture of g-C3N4 and phenol-formaldehyde (PF) obtained in situ polymerisation. This synthesis method not only improves the interaction between PF and g-C3N4, but also promotes the preparation of aromatic carbon-doped g-C3N4 in the subsequent calcinations process. The resulted C/g-C3N4-600 catalysts show developed optoelectronic properties, superior photocatalytic activity and higher surface area (1336 cm2 g-1) due to the extended π-conjugation system and distinctive morphology.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2021.10035746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2021.10035746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Construction C/g-C3N4 with synergistic performance toward high photocatalytic performance
Aromatic carbon (C) doped graphitic carbon nitride (g-C3N4) is one of the effective strategies to improve the photocatalytic performance of g-C3N4. The present work developed a feasible method to construct C/g-C3N4 through carbonising the mixture of g-C3N4 and phenol-formaldehyde (PF) obtained in situ polymerisation. This synthesis method not only improves the interaction between PF and g-C3N4, but also promotes the preparation of aromatic carbon-doped g-C3N4 in the subsequent calcinations process. The resulted C/g-C3N4-600 catalysts show developed optoelectronic properties, superior photocatalytic activity and higher surface area (1336 cm2 g-1) due to the extended π-conjugation system and distinctive morphology.