{"title":"不含Ambrosetti-Rabinowitz型条件的一般Kirchhoff型方程的高能解","authors":"Jian Zhang, Hui Liu, J. Zuo","doi":"10.1515/anona-2022-0311","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\\left(\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{3}}| \\nabla u{| }^{2}{\\rm{d}}x\\right)\\Delta u+u=a\\left(x)f\\left(u)\\hspace{1em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where inf R + M > 0 {\\inf }_{{{\\mathbb{R}}}^{+}}M\\gt 0 and f f is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition\",\"authors\":\"Jian Zhang, Hui Liu, J. Zuo\",\"doi\":\"10.1515/anona-2022-0311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\\\\left(\\\\mathop{\\\\int }\\\\limits_{{{\\\\mathbb{R}}}^{3}}| \\\\nabla u{| }^{2}{\\\\rm{d}}x\\\\right)\\\\Delta u+u=a\\\\left(x)f\\\\left(u)\\\\hspace{1em}{\\\\rm{in}}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{3}, where inf R + M > 0 {\\\\inf }_{{{\\\\mathbb{R}}}^{+}}M\\\\gt 0 and f f is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0311\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0311","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
摘要
摘要在这篇文章中,我们研究了以下一般的Kirchhoff型方程:在R3中,−MŞR 3ŞõuŞ2 d xΔu+u=a(x)f(u),-M\left(\mathop{\int}\limits_{{\mathbb{R}}}^{3}}|\nabla u{|}^{2}{\rm{d}}x\right)\Delta u+u=a\left R}}}^{3},其中inf R+M>0{\inf}_{{\mathbb{R}}}^{+}M\gt 0并且f是超线性次临界项。利用Pohozлev流形,在不存在Ambrosetti-Rabinowitz型条件的情况下,我们得到了上述方程的高能解的存在性。
High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition
Abstract In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where inf R + M > 0 {\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and f f is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.