{"title":"双曲守恒律的一种新的高阶混合WENO格式","authors":"Liang Li, Zhenming Wang, Zhonglong Zhao, Jun Zhu","doi":"10.1002/num.23052","DOIUrl":null,"url":null,"abstract":"This article proposes an improved hybrid weighted essentially non‐oscillatory (WENO) scheme based on the third‐ and fifth‐order finite‐difference modified WENO (MWENO) schemes developed by Zhu et al. in (SIAM J. Sci. Comput. 39 (2017), A1089–A1113.) for solving hyperbolic conservation laws. The MWENO schemes give a guideline on whether to use the WENO scheme or the linear upwind scheme. Unfortunately, because there is no explicit formula for computing the roots of algebraic polynomials of order four or higher, it is difficult to generalize this criterion to higher order cases. Therefore, this article proposes a simple criterion for constructing a series of seventh‐, ninth‐, and higher‐order hybrid WENO schemes, and then designs a class of improved smooth indicator WENO (WENO‐MS) schemes. Compared with the classical WENO schemes, the main advantages of the WENO‐MS schemes are their robustness and efficiency. And these WENO‐MS schemes are more efficient, have better resolution, and can solve many extreme problems without any additional techniques. Furthermore, a simplification criterion is proposed to further improve the computational efficiency of the WENO‐MS schemes, and these simple WENO‐MS schemes are abbreviated as WENO‐SMS schemes in this article. Extensive numerical results demonstrate the good performance of the WENO‐MS schemes and the WENO‐SMS schemes.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"4347 - 4376"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new high order hybrid WENO scheme for hyperbolic conservation laws\",\"authors\":\"Liang Li, Zhenming Wang, Zhonglong Zhao, Jun Zhu\",\"doi\":\"10.1002/num.23052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an improved hybrid weighted essentially non‐oscillatory (WENO) scheme based on the third‐ and fifth‐order finite‐difference modified WENO (MWENO) schemes developed by Zhu et al. in (SIAM J. Sci. Comput. 39 (2017), A1089–A1113.) for solving hyperbolic conservation laws. The MWENO schemes give a guideline on whether to use the WENO scheme or the linear upwind scheme. Unfortunately, because there is no explicit formula for computing the roots of algebraic polynomials of order four or higher, it is difficult to generalize this criterion to higher order cases. Therefore, this article proposes a simple criterion for constructing a series of seventh‐, ninth‐, and higher‐order hybrid WENO schemes, and then designs a class of improved smooth indicator WENO (WENO‐MS) schemes. Compared with the classical WENO schemes, the main advantages of the WENO‐MS schemes are their robustness and efficiency. And these WENO‐MS schemes are more efficient, have better resolution, and can solve many extreme problems without any additional techniques. Furthermore, a simplification criterion is proposed to further improve the computational efficiency of the WENO‐MS schemes, and these simple WENO‐MS schemes are abbreviated as WENO‐SMS schemes in this article. Extensive numerical results demonstrate the good performance of the WENO‐MS schemes and the WENO‐SMS schemes.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"39 1\",\"pages\":\"4347 - 4376\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23052\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23052","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new high order hybrid WENO scheme for hyperbolic conservation laws
This article proposes an improved hybrid weighted essentially non‐oscillatory (WENO) scheme based on the third‐ and fifth‐order finite‐difference modified WENO (MWENO) schemes developed by Zhu et al. in (SIAM J. Sci. Comput. 39 (2017), A1089–A1113.) for solving hyperbolic conservation laws. The MWENO schemes give a guideline on whether to use the WENO scheme or the linear upwind scheme. Unfortunately, because there is no explicit formula for computing the roots of algebraic polynomials of order four or higher, it is difficult to generalize this criterion to higher order cases. Therefore, this article proposes a simple criterion for constructing a series of seventh‐, ninth‐, and higher‐order hybrid WENO schemes, and then designs a class of improved smooth indicator WENO (WENO‐MS) schemes. Compared with the classical WENO schemes, the main advantages of the WENO‐MS schemes are their robustness and efficiency. And these WENO‐MS schemes are more efficient, have better resolution, and can solve many extreme problems without any additional techniques. Furthermore, a simplification criterion is proposed to further improve the computational efficiency of the WENO‐MS schemes, and these simple WENO‐MS schemes are abbreviated as WENO‐SMS schemes in this article. Extensive numerical results demonstrate the good performance of the WENO‐MS schemes and the WENO‐SMS schemes.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.