{"title":"环- lwe中的离散化与产品分布","authors":"S. Murphy, Rachel Player","doi":"10.1515/jmc-2020-0073","DOIUrl":null,"url":null,"abstract":"Abstract A statistical framework applicable to Ring-LWE was outlined by Murphy and Player (IACR eprint 2019/452). Its applicability was demonstrated with an analysis of the decryption failure probability for degree-1 and degree-2 ciphertexts in the homomorphic encryption scheme of Lyubashevsky, Peikert and Regev (IACR eprint 2013/293). In this paper, we clarify and extend results presented by Murphy and Player. Firstly, we make precise the approximation of the discretisation of a Normal random variable as a Normal random variable, as used in the encryption process of Lyubashevsky, Peikert and Regev. Secondly, we show how to extend the analysis given by Murphy and Player to degree-k ciphertexts, by precisely characterising the distribution of the noise in these ciphertexts.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"15 1","pages":"45 - 59"},"PeriodicalIF":0.5000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2020-0073","citationCount":"7","resultStr":"{\"title\":\"Discretisation and Product Distributions in Ring-LWE\",\"authors\":\"S. Murphy, Rachel Player\",\"doi\":\"10.1515/jmc-2020-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A statistical framework applicable to Ring-LWE was outlined by Murphy and Player (IACR eprint 2019/452). Its applicability was demonstrated with an analysis of the decryption failure probability for degree-1 and degree-2 ciphertexts in the homomorphic encryption scheme of Lyubashevsky, Peikert and Regev (IACR eprint 2013/293). In this paper, we clarify and extend results presented by Murphy and Player. Firstly, we make precise the approximation of the discretisation of a Normal random variable as a Normal random variable, as used in the encryption process of Lyubashevsky, Peikert and Regev. Secondly, we show how to extend the analysis given by Murphy and Player to degree-k ciphertexts, by precisely characterising the distribution of the noise in these ciphertexts.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"15 1\",\"pages\":\"45 - 59\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2020-0073\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2020-0073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2020-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Discretisation and Product Distributions in Ring-LWE
Abstract A statistical framework applicable to Ring-LWE was outlined by Murphy and Player (IACR eprint 2019/452). Its applicability was demonstrated with an analysis of the decryption failure probability for degree-1 and degree-2 ciphertexts in the homomorphic encryption scheme of Lyubashevsky, Peikert and Regev (IACR eprint 2013/293). In this paper, we clarify and extend results presented by Murphy and Player. Firstly, we make precise the approximation of the discretisation of a Normal random variable as a Normal random variable, as used in the encryption process of Lyubashevsky, Peikert and Regev. Secondly, we show how to extend the analysis given by Murphy and Player to degree-k ciphertexts, by precisely characterising the distribution of the noise in these ciphertexts.