{"title":"离散集的正交投影","authors":"Weikun He","doi":"10.4171/jfg/92","DOIUrl":null,"url":null,"abstract":"We generalize Bourgain's discretized projection theorem to higher rank situations. Like Bourgain's theorem, our result yields an estimate for the Hausdorff dimension of the exceptional sets in projection theorems formulated in terms of Hausdorff dimensions. This estimate complements earlier results of Mattila and Falconer.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Orthogonal projections of discretized sets\",\"authors\":\"Weikun He\",\"doi\":\"10.4171/jfg/92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize Bourgain's discretized projection theorem to higher rank situations. Like Bourgain's theorem, our result yields an estimate for the Hausdorff dimension of the exceptional sets in projection theorems formulated in terms of Hausdorff dimensions. This estimate complements earlier results of Mattila and Falconer.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/92\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/92","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We generalize Bourgain's discretized projection theorem to higher rank situations. Like Bourgain's theorem, our result yields an estimate for the Hausdorff dimension of the exceptional sets in projection theorems formulated in terms of Hausdorff dimensions. This estimate complements earlier results of Mattila and Falconer.