关于弱Turán-good图

IF 0.5 4区 数学 Q3 MATHEMATICS
Dániel Gerbner
{"title":"关于弱Turán-good图","authors":"Dániel Gerbner","doi":"10.7151/dmgt.2510","DOIUrl":null,"url":null,"abstract":"Given graphs $H$ and $F$ with $\\chi(H)<\\chi(F)$, we say that $H$ is weakly $F$-Tur\\'an-good if among $n$-vertex $F$-free graphs, a $(\\chi(F)-1)$-partite graph contains the most copies of $H$. Let $H$ be a bipartite graph that contains a complete bipartite subgraph $K$ such that each vertex of $H$ is adjacent to a vertex of $K$. We show that $H$ is weakly $K_3$-Tur\\'an-good, improving a very recent asymptotic bound due to Grzesik, Gy\\H ori, Salia and Tompkins. They also showed that for any $r$ there exist graphs that are not weakly $K_r$-Tur\\'an-good. We show that for any non-bipartite $F$ there exists graphs that are not weakly $F$-Tur\\'an-good. We also show examples of graphs that are $C_{2k+1}$-Tur\\'an-good but not $C_{2\\ell+1}$-Tur\\'an-good for every $k>\\ell$.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On weakly Turán-good graphs\",\"authors\":\"Dániel Gerbner\",\"doi\":\"10.7151/dmgt.2510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given graphs $H$ and $F$ with $\\\\chi(H)<\\\\chi(F)$, we say that $H$ is weakly $F$-Tur\\\\'an-good if among $n$-vertex $F$-free graphs, a $(\\\\chi(F)-1)$-partite graph contains the most copies of $H$. Let $H$ be a bipartite graph that contains a complete bipartite subgraph $K$ such that each vertex of $H$ is adjacent to a vertex of $K$. We show that $H$ is weakly $K_3$-Tur\\\\'an-good, improving a very recent asymptotic bound due to Grzesik, Gy\\\\H ori, Salia and Tompkins. They also showed that for any $r$ there exist graphs that are not weakly $K_r$-Tur\\\\'an-good. We show that for any non-bipartite $F$ there exists graphs that are not weakly $F$-Tur\\\\'an-good. We also show examples of graphs that are $C_{2k+1}$-Tur\\\\'an-good but not $C_{2\\\\ell+1}$-Tur\\\\'an-good for every $k>\\\\ell$.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2510\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2510","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

给定图$H$和$F$与$\chi(H)\ well $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On weakly Turán-good graphs
Given graphs $H$ and $F$ with $\chi(H)<\chi(F)$, we say that $H$ is weakly $F$-Tur\'an-good if among $n$-vertex $F$-free graphs, a $(\chi(F)-1)$-partite graph contains the most copies of $H$. Let $H$ be a bipartite graph that contains a complete bipartite subgraph $K$ such that each vertex of $H$ is adjacent to a vertex of $K$. We show that $H$ is weakly $K_3$-Tur\'an-good, improving a very recent asymptotic bound due to Grzesik, Gy\H ori, Salia and Tompkins. They also showed that for any $r$ there exist graphs that are not weakly $K_r$-Tur\'an-good. We show that for any non-bipartite $F$ there exists graphs that are not weakly $F$-Tur\'an-good. We also show examples of graphs that are $C_{2k+1}$-Tur\'an-good but not $C_{2\ell+1}$-Tur\'an-good for every $k>\ell$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信