S. Islam, Syed Abdus Satter, N. Khatun, M. S. Hossain, S. Farhad, P. Bała, S. Tabassum, A. Siddika
{"title":"铋钇共掺杂钛酸钡陶瓷的结构、介电和电学性能研究","authors":"S. Islam, Syed Abdus Satter, N. Khatun, M. S. Hossain, S. Farhad, P. Bała, S. Tabassum, A. Siddika","doi":"10.1142/s2251237319500060","DOIUrl":null,"url":null,"abstract":"Bismuth and Yttrium co-doped Barium Titanate (BaTiO3) ceramics with the general formula (Ba[Formula: see text]BiX) (YxTi[Formula: see text]) O3 (where [Formula: see text], 0.01, 0.03, 0.05) have been synthesized at 1300∘C for 3[Formula: see text]h by the standard solid-state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Impedance Analyzer. Temperature-dependent dielectric properties of the samples were also measured. The XRD result revealed perovskite structure for un-doped and co-doped BaTiO3 with tetragonal phase. However, with increasing doping concentration, a Pseudo cubic phase occurs also confirmed by the twin peaks (002) and (200) of XRD pattern. From SEM micrograph, submicron size particles were observed for all synthesized BaTiO3 samples and exhibit a narrow size distribution with quiet uniform morphology. The crystalline size for un-doped BaTiO3 found was 24.26[Formula: see text]nm, the size decreases (minimum 19.59[Formula: see text]nm for [Formula: see text]) for all compositions of co-doped BaTiO3. Dielectric constant values were apparently high and direct current (DC) resistivity follows a decreasing trend at higher doping concentration. The sample doped with [Formula: see text] shows minimum DC resistivity and maximum dielectric constant among the samples investigated.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251237319500060","citationCount":"3","resultStr":"{\"title\":\"Investigation of Structural, Dielectric and Electrical Properties of Barium Titanate Ceramics Co-Doped with Bismuth and Yttrium\",\"authors\":\"S. Islam, Syed Abdus Satter, N. Khatun, M. S. Hossain, S. Farhad, P. Bała, S. Tabassum, A. Siddika\",\"doi\":\"10.1142/s2251237319500060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth and Yttrium co-doped Barium Titanate (BaTiO3) ceramics with the general formula (Ba[Formula: see text]BiX) (YxTi[Formula: see text]) O3 (where [Formula: see text], 0.01, 0.03, 0.05) have been synthesized at 1300∘C for 3[Formula: see text]h by the standard solid-state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Impedance Analyzer. Temperature-dependent dielectric properties of the samples were also measured. The XRD result revealed perovskite structure for un-doped and co-doped BaTiO3 with tetragonal phase. However, with increasing doping concentration, a Pseudo cubic phase occurs also confirmed by the twin peaks (002) and (200) of XRD pattern. From SEM micrograph, submicron size particles were observed for all synthesized BaTiO3 samples and exhibit a narrow size distribution with quiet uniform morphology. The crystalline size for un-doped BaTiO3 found was 24.26[Formula: see text]nm, the size decreases (minimum 19.59[Formula: see text]nm for [Formula: see text]) for all compositions of co-doped BaTiO3. Dielectric constant values were apparently high and direct current (DC) resistivity follows a decreasing trend at higher doping concentration. The sample doped with [Formula: see text] shows minimum DC resistivity and maximum dielectric constant among the samples investigated.\",\"PeriodicalId\":16406,\"journal\":{\"name\":\"Journal of Molecular and Engineering Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s2251237319500060\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular and Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2251237319500060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2251237319500060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Structural, Dielectric and Electrical Properties of Barium Titanate Ceramics Co-Doped with Bismuth and Yttrium
Bismuth and Yttrium co-doped Barium Titanate (BaTiO3) ceramics with the general formula (Ba[Formula: see text]BiX) (YxTi[Formula: see text]) O3 (where [Formula: see text], 0.01, 0.03, 0.05) have been synthesized at 1300∘C for 3[Formula: see text]h by the standard solid-state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Impedance Analyzer. Temperature-dependent dielectric properties of the samples were also measured. The XRD result revealed perovskite structure for un-doped and co-doped BaTiO3 with tetragonal phase. However, with increasing doping concentration, a Pseudo cubic phase occurs also confirmed by the twin peaks (002) and (200) of XRD pattern. From SEM micrograph, submicron size particles were observed for all synthesized BaTiO3 samples and exhibit a narrow size distribution with quiet uniform morphology. The crystalline size for un-doped BaTiO3 found was 24.26[Formula: see text]nm, the size decreases (minimum 19.59[Formula: see text]nm for [Formula: see text]) for all compositions of co-doped BaTiO3. Dielectric constant values were apparently high and direct current (DC) resistivity follows a decreasing trend at higher doping concentration. The sample doped with [Formula: see text] shows minimum DC resistivity and maximum dielectric constant among the samples investigated.