具有有限单调群的退化族

IF 0.4 4区 数学 Q4 MATHEMATICS
T. Okuda
{"title":"具有有限单调群的退化族","authors":"T. Okuda","doi":"10.2996/KMJ44101","DOIUrl":null,"url":null,"abstract":"A degenerating family of Riemann surfaces over a Riemann surface gives us a monodromy representation, which is a homomorphism from the fundamental group of a punctured surface to the mapping class group. We show that, given such a homomorphism, if its image is finite, then there exists an (isotrivial) degenerating family of Riemann surfaces whose monodromy representation coincides with it. Moreover, we discuss the special sections of such a degenerating family.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerating families with finite monodromy groups\",\"authors\":\"T. Okuda\",\"doi\":\"10.2996/KMJ44101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A degenerating family of Riemann surfaces over a Riemann surface gives us a monodromy representation, which is a homomorphism from the fundamental group of a punctured surface to the mapping class group. We show that, given such a homomorphism, if its image is finite, then there exists an (isotrivial) degenerating family of Riemann surfaces whose monodromy representation coincides with it. Moreover, we discuss the special sections of such a degenerating family.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ44101\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/KMJ44101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

黎曼曲面上的退化黎曼曲面族给出了一个单态表示,即从穿孔曲面的基群到映射类群的同态。我们证明,给定这样一个同态,如果它的像是有限的,那么存在一个(等平凡的)退化黎曼曲面族,其单调表示与它一致。此外,我们还讨论了这样一个退化家庭的特殊部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerating families with finite monodromy groups
A degenerating family of Riemann surfaces over a Riemann surface gives us a monodromy representation, which is a homomorphism from the fundamental group of a punctured surface to the mapping class group. We show that, given such a homomorphism, if its image is finite, then there exists an (isotrivial) degenerating family of Riemann surfaces whose monodromy representation coincides with it. Moreover, we discuss the special sections of such a degenerating family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信