{"title":"具有有限单调群的退化族","authors":"T. Okuda","doi":"10.2996/KMJ44101","DOIUrl":null,"url":null,"abstract":"A degenerating family of Riemann surfaces over a Riemann surface gives us a monodromy representation, which is a homomorphism from the fundamental group of a punctured surface to the mapping class group. We show that, given such a homomorphism, if its image is finite, then there exists an (isotrivial) degenerating family of Riemann surfaces whose monodromy representation coincides with it. Moreover, we discuss the special sections of such a degenerating family.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerating families with finite monodromy groups\",\"authors\":\"T. Okuda\",\"doi\":\"10.2996/KMJ44101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A degenerating family of Riemann surfaces over a Riemann surface gives us a monodromy representation, which is a homomorphism from the fundamental group of a punctured surface to the mapping class group. We show that, given such a homomorphism, if its image is finite, then there exists an (isotrivial) degenerating family of Riemann surfaces whose monodromy representation coincides with it. Moreover, we discuss the special sections of such a degenerating family.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ44101\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/KMJ44101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Degenerating families with finite monodromy groups
A degenerating family of Riemann surfaces over a Riemann surface gives us a monodromy representation, which is a homomorphism from the fundamental group of a punctured surface to the mapping class group. We show that, given such a homomorphism, if its image is finite, then there exists an (isotrivial) degenerating family of Riemann surfaces whose monodromy representation coincides with it. Moreover, we discuss the special sections of such a degenerating family.
期刊介绍:
Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.