{"title":"MHD williamson -纳米流体在吸力/喷射和对流边界条件下流过垂直锥的数值研究","authors":"M. Sathyanarayana, T. R. Goud","doi":"10.24425/ather.2023.146561","DOIUrl":null,"url":null,"abstract":"The primary objective is to perform a numerical synthesis of a Williamson fluid that has nanoparticles added to it and is directed toward a vertical cone in a uniform transverse magnetic field, under heat and mass transport, suction and injection, and convective boundary conditions. For this particular fluid flow, by utilising similarity transformations, the partial differential equations are transformed into ordinary differential equations. Calculating these kinds of equations with their suitable bounds requires the Runge–Kutta technique in combining a shooting strategy. The functions of a vast number of parameters are graphically represented and assessed on flow field profiles. The results show the local skin friction, local Nusselt number, and local Sherwood number and the changing values of the flow constraints. Finally, the results are compared to those from the previously published works and found to be in good agreement.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of MHD Williamson-nano fluid flow past a vertical cone in the presence of suction/injection and convective boundary conditions\",\"authors\":\"M. Sathyanarayana, T. R. Goud\",\"doi\":\"10.24425/ather.2023.146561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective is to perform a numerical synthesis of a Williamson fluid that has nanoparticles added to it and is directed toward a vertical cone in a uniform transverse magnetic field, under heat and mass transport, suction and injection, and convective boundary conditions. For this particular fluid flow, by utilising similarity transformations, the partial differential equations are transformed into ordinary differential equations. Calculating these kinds of equations with their suitable bounds requires the Runge–Kutta technique in combining a shooting strategy. The functions of a vast number of parameters are graphically represented and assessed on flow field profiles. The results show the local skin friction, local Nusselt number, and local Sherwood number and the changing values of the flow constraints. Finally, the results are compared to those from the previously published works and found to be in good agreement.\",\"PeriodicalId\":45257,\"journal\":{\"name\":\"Archives of Thermodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ather.2023.146561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2023.146561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Numerical study of MHD Williamson-nano fluid flow past a vertical cone in the presence of suction/injection and convective boundary conditions
The primary objective is to perform a numerical synthesis of a Williamson fluid that has nanoparticles added to it and is directed toward a vertical cone in a uniform transverse magnetic field, under heat and mass transport, suction and injection, and convective boundary conditions. For this particular fluid flow, by utilising similarity transformations, the partial differential equations are transformed into ordinary differential equations. Calculating these kinds of equations with their suitable bounds requires the Runge–Kutta technique in combining a shooting strategy. The functions of a vast number of parameters are graphically represented and assessed on flow field profiles. The results show the local skin friction, local Nusselt number, and local Sherwood number and the changing values of the flow constraints. Finally, the results are compared to those from the previously published works and found to be in good agreement.
期刊介绍:
The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.