{"title":"双曲正弦反变换和变换后的边际效应","authors":"E. Norton","doi":"10.1177/1536867X221124553","DOIUrl":null,"url":null,"abstract":"In this article, I show how to calculate consistent marginal effects on the original scale of the outcome variable in Stata after estimating a linear regression with a dependent variable that has been transformed by the inverse hyperbolic sine function. The method uses a nonparametric retransformation of the error term and accounts for any scaling of the dependent variable. The inverse hyperbolic sine function is not invariant to scaling, which is known to shift marginal effects between those from an untransformed dependent variable to those of a logtransformed dependent variable, when all observations are positive.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"702 - 712"},"PeriodicalIF":3.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The inverse hyperbolic sine transformation and retransformed marginal effects\",\"authors\":\"E. Norton\",\"doi\":\"10.1177/1536867X221124553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, I show how to calculate consistent marginal effects on the original scale of the outcome variable in Stata after estimating a linear regression with a dependent variable that has been transformed by the inverse hyperbolic sine function. The method uses a nonparametric retransformation of the error term and accounts for any scaling of the dependent variable. The inverse hyperbolic sine function is not invariant to scaling, which is known to shift marginal effects between those from an untransformed dependent variable to those of a logtransformed dependent variable, when all observations are positive.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":\"22 1\",\"pages\":\"702 - 712\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X221124553\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221124553","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
The inverse hyperbolic sine transformation and retransformed marginal effects
In this article, I show how to calculate consistent marginal effects on the original scale of the outcome variable in Stata after estimating a linear regression with a dependent variable that has been transformed by the inverse hyperbolic sine function. The method uses a nonparametric retransformation of the error term and accounts for any scaling of the dependent variable. The inverse hyperbolic sine function is not invariant to scaling, which is known to shift marginal effects between those from an untransformed dependent variable to those of a logtransformed dependent variable, when all observations are positive.
期刊介绍:
The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.