{"title":"极值西顿集是傅里叶一致的,并应用于划分正则性","authors":"Miquel Ortega, Sean M. Prendiville","doi":"10.5802/jtnb.1239","DOIUrl":null,"url":null,"abstract":"Generalising results of Erd\\H{o}s-Freud and Lindstr\\\"om, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity\",\"authors\":\"Miquel Ortega, Sean M. Prendiville\",\"doi\":\"10.5802/jtnb.1239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalising results of Erd\\\\H{o}s-Freud and Lindstr\\\\\\\"om, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
Generalising results of Erd\H{o}s-Freud and Lindstr\"om, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.