极值西顿集是傅里叶一致的,并应用于划分正则性

Pub Date : 2021-10-26 DOI:10.5802/jtnb.1239
Miquel Ortega, Sean M. Prendiville
{"title":"极值西顿集是傅里叶一致的,并应用于划分正则性","authors":"Miquel Ortega, Sean M. Prendiville","doi":"10.5802/jtnb.1239","DOIUrl":null,"url":null,"abstract":"Generalising results of Erd\\H{o}s-Freud and Lindstr\\\"om, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity\",\"authors\":\"Miquel Ortega, Sean M. Prendiville\",\"doi\":\"10.5802/jtnb.1239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalising results of Erd\\\\H{o}s-Freud and Lindstr\\\\\\\"om, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推广了Erd\H{o}s-Freud和Lindstr\ om的结果,证明了整数有界区间的最大Sidon子集在Bohr邻域中是均匀分布的。我们通过证明极值西顿集是傅立叶-伪随机来建立这一点,因为它们没有大的非平凡傅立叶系数。作为进一步的应用,我们推导出,对于任何五个或更多变量的分割正则方程,极值西顿集的每一个有限着色都有一个单色解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
Generalising results of Erd\H{o}s-Freud and Lindstr\"om, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信