二次映射族Birkhoff平均商的多重分形谱

IF 0.4 Q4 MATHEMATICS
A. Mesón, F. Vericat
{"title":"二次映射族Birkhoff平均商的多重分形谱","authors":"A. Mesón, F. Vericat","doi":"10.1080/1726037X.2017.1413064","DOIUrl":null,"url":null,"abstract":"ABSTRACT In a recent article, Chung and Takahashi (Erg. Th & Dynan. Sys. 34, 1116 (2014)) effected a multifractal description of the Birkhoff spectrum for a set of quadratic one dimensional functions known as the Benedicks-Carleson maps. They obtained a variational formula for the dimension spectrum of Birkhoff averages. In this article we try to complete the analysis studying the spectrum of quotients of Birkhoff averages.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"16 1","pages":"17 - 32"},"PeriodicalIF":0.4000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2017.1413064","citationCount":"0","resultStr":"{\"title\":\"Multifractal spectrum of quotients of Birkhoff averages for a family of quadratic maps\",\"authors\":\"A. Mesón, F. Vericat\",\"doi\":\"10.1080/1726037X.2017.1413064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In a recent article, Chung and Takahashi (Erg. Th & Dynan. Sys. 34, 1116 (2014)) effected a multifractal description of the Birkhoff spectrum for a set of quadratic one dimensional functions known as the Benedicks-Carleson maps. They obtained a variational formula for the dimension spectrum of Birkhoff averages. In this article we try to complete the analysis studying the spectrum of quotients of Birkhoff averages.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"16 1\",\"pages\":\"17 - 32\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2017.1413064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2017.1413064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2017.1413064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇文章中,Chung和Takahashi (Erg。the & Dynan。Sys. 34, 1116(2014))对一组被称为Benedicks-Carleson映射的二次一维函数的Birkhoff谱进行了多重分形描述。他们得到了伯克霍夫平均维谱的变分公式。本文试图完成对伯克霍夫平均商谱的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifractal spectrum of quotients of Birkhoff averages for a family of quadratic maps
ABSTRACT In a recent article, Chung and Takahashi (Erg. Th & Dynan. Sys. 34, 1116 (2014)) effected a multifractal description of the Birkhoff spectrum for a set of quadratic one dimensional functions known as the Benedicks-Carleson maps. They obtained a variational formula for the dimension spectrum of Birkhoff averages. In this article we try to complete the analysis studying the spectrum of quotients of Birkhoff averages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信