{"title":"二次映射族Birkhoff平均商的多重分形谱","authors":"A. Mesón, F. Vericat","doi":"10.1080/1726037X.2017.1413064","DOIUrl":null,"url":null,"abstract":"ABSTRACT In a recent article, Chung and Takahashi (Erg. Th & Dynan. Sys. 34, 1116 (2014)) effected a multifractal description of the Birkhoff spectrum for a set of quadratic one dimensional functions known as the Benedicks-Carleson maps. They obtained a variational formula for the dimension spectrum of Birkhoff averages. In this article we try to complete the analysis studying the spectrum of quotients of Birkhoff averages.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"16 1","pages":"17 - 32"},"PeriodicalIF":0.4000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2017.1413064","citationCount":"0","resultStr":"{\"title\":\"Multifractal spectrum of quotients of Birkhoff averages for a family of quadratic maps\",\"authors\":\"A. Mesón, F. Vericat\",\"doi\":\"10.1080/1726037X.2017.1413064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In a recent article, Chung and Takahashi (Erg. Th & Dynan. Sys. 34, 1116 (2014)) effected a multifractal description of the Birkhoff spectrum for a set of quadratic one dimensional functions known as the Benedicks-Carleson maps. They obtained a variational formula for the dimension spectrum of Birkhoff averages. In this article we try to complete the analysis studying the spectrum of quotients of Birkhoff averages.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"16 1\",\"pages\":\"17 - 32\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2017.1413064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2017.1413064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2017.1413064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multifractal spectrum of quotients of Birkhoff averages for a family of quadratic maps
ABSTRACT In a recent article, Chung and Takahashi (Erg. Th & Dynan. Sys. 34, 1116 (2014)) effected a multifractal description of the Birkhoff spectrum for a set of quadratic one dimensional functions known as the Benedicks-Carleson maps. They obtained a variational formula for the dimension spectrum of Birkhoff averages. In this article we try to complete the analysis studying the spectrum of quotients of Birkhoff averages.