TiCN基金属陶瓷的粘结剂喷射

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Christian Berger, J. Pötschke, M. Fries, T. Moritz, A. Michaelis
{"title":"TiCN基金属陶瓷的粘结剂喷射","authors":"Christian Berger, J. Pötschke, M. Fries, T. Moritz, A. Michaelis","doi":"10.1080/00325899.2022.2099636","DOIUrl":null,"url":null,"abstract":"ABSTRACT Additive Manufacturing is experiencing an upswing in many sectors of industry for a broad variety of materials. Processes are mainly developed for polymers and metals. For ceramics, hardmetals and especially cermets there are only a few additive processes suitable. The powder-based technique Binder-Jetting is one of these suitable processes with high productivity and relatively low green density. Within this study, TiCN-based cermets are printed by Binder-Jetting for the first time. The complexity of influences of the morphology and composition of cermet powders are discussed in regard to bulk density and material properties of printed and sintered parts. Studied TiCN-based cermet compositions represent different Ni and Mo2C contents. Main points of this investigation are further the adjustment of ratio of the raw materials for good sintering behaviour and their influence on the microstructures and as a function of varied sintering temperatures.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"65 1","pages":"382 - 389"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Binder-jetting of TiCN-based cermets\",\"authors\":\"Christian Berger, J. Pötschke, M. Fries, T. Moritz, A. Michaelis\",\"doi\":\"10.1080/00325899.2022.2099636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Additive Manufacturing is experiencing an upswing in many sectors of industry for a broad variety of materials. Processes are mainly developed for polymers and metals. For ceramics, hardmetals and especially cermets there are only a few additive processes suitable. The powder-based technique Binder-Jetting is one of these suitable processes with high productivity and relatively low green density. Within this study, TiCN-based cermets are printed by Binder-Jetting for the first time. The complexity of influences of the morphology and composition of cermet powders are discussed in regard to bulk density and material properties of printed and sintered parts. Studied TiCN-based cermet compositions represent different Ni and Mo2C contents. Main points of this investigation are further the adjustment of ratio of the raw materials for good sintering behaviour and their influence on the microstructures and as a function of varied sintering temperatures.\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":\"65 1\",\"pages\":\"382 - 389\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2022.2099636\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2099636","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

摘要增材制造业在许多行业中都在经历一场针对各种材料的崛起。工艺主要针对聚合物和金属开发。对于陶瓷、硬质合金,尤其是金属陶瓷,只有少数几种添加剂工艺适用。基于粉末的技术粘结剂喷射是这些合适的工艺之一,具有高生产率和相对低的生坯密度。在本研究中,首次通过粘结剂喷射法印刷了TiCN基金属陶瓷。讨论了金属陶瓷粉末的形态和成分对印刷和烧结零件的体积密度和材料性能的影响的复杂性。所研究的TiCN基金属陶瓷成分代表了不同的Ni和Mo2C含量。本研究的要点是进一步调整原材料的比例以获得良好的烧结性能,以及它们对微观结构的影响,以及作为不同烧结温度的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binder-jetting of TiCN-based cermets
ABSTRACT Additive Manufacturing is experiencing an upswing in many sectors of industry for a broad variety of materials. Processes are mainly developed for polymers and metals. For ceramics, hardmetals and especially cermets there are only a few additive processes suitable. The powder-based technique Binder-Jetting is one of these suitable processes with high productivity and relatively low green density. Within this study, TiCN-based cermets are printed by Binder-Jetting for the first time. The complexity of influences of the morphology and composition of cermet powders are discussed in regard to bulk density and material properties of printed and sintered parts. Studied TiCN-based cermet compositions represent different Ni and Mo2C contents. Main points of this investigation are further the adjustment of ratio of the raw materials for good sintering behaviour and their influence on the microstructures and as a function of varied sintering temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信