{"title":"用于钢框架结构健康监测的振动数据驱动机器学习架构","authors":"M. Naresh, S. Sikdar, J. Pal, S. Sikdar","doi":"10.1111/str.12439","DOIUrl":null,"url":null,"abstract":"A vibration data‐based machine learning architecture is designed for structural health monitoring (SHM) of a steel plane frame structure. This architecture uses a Bag‐of‐Features algorithm that extracts the speeded‐up robust features (SURF) from the time‐frequency scalogram images of the registered vibration data. The discriminative image features are then quantised to a visual vocabulary using K‐means clustering. Finally, a support vector machine (SVM) is trained to distinguish the undamaged and multiple damage cases of the frame structure based on the discriminative features. The potential of the machine learning architecture is tested for an unseen dataset that was not used in training as well as with some datasets from entirely new damages close to existing (i.e., trained) damage classes. The results are then compared with those obtained using three other combinations of features and learning algorithms—(i) histogram of oriented gradients (HOG) feature with SVM, (ii) SURF feature with k‐nearest neighbours (KNN) and (iii) HOG feature with KNN. In order to examine the robustness of the approach, the study is further extended by considering environmental variabilities along with the localisation and quantification of damage. The experimental results show that the machine learning architecture can effectively classify the undamaged and different joint damage classes with high testing accuracy that indicates its SHM potential for such frame structures.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vibration data‐driven machine learning architecture for structural health monitoring of steel frame structures\",\"authors\":\"M. Naresh, S. Sikdar, J. Pal, S. Sikdar\",\"doi\":\"10.1111/str.12439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vibration data‐based machine learning architecture is designed for structural health monitoring (SHM) of a steel plane frame structure. This architecture uses a Bag‐of‐Features algorithm that extracts the speeded‐up robust features (SURF) from the time‐frequency scalogram images of the registered vibration data. The discriminative image features are then quantised to a visual vocabulary using K‐means clustering. Finally, a support vector machine (SVM) is trained to distinguish the undamaged and multiple damage cases of the frame structure based on the discriminative features. The potential of the machine learning architecture is tested for an unseen dataset that was not used in training as well as with some datasets from entirely new damages close to existing (i.e., trained) damage classes. The results are then compared with those obtained using three other combinations of features and learning algorithms—(i) histogram of oriented gradients (HOG) feature with SVM, (ii) SURF feature with k‐nearest neighbours (KNN) and (iii) HOG feature with KNN. In order to examine the robustness of the approach, the study is further extended by considering environmental variabilities along with the localisation and quantification of damage. The experimental results show that the machine learning architecture can effectively classify the undamaged and different joint damage classes with high testing accuracy that indicates its SHM potential for such frame structures.\",\"PeriodicalId\":51176,\"journal\":{\"name\":\"Strain\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strain\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/str.12439\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12439","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Vibration data‐driven machine learning architecture for structural health monitoring of steel frame structures
A vibration data‐based machine learning architecture is designed for structural health monitoring (SHM) of a steel plane frame structure. This architecture uses a Bag‐of‐Features algorithm that extracts the speeded‐up robust features (SURF) from the time‐frequency scalogram images of the registered vibration data. The discriminative image features are then quantised to a visual vocabulary using K‐means clustering. Finally, a support vector machine (SVM) is trained to distinguish the undamaged and multiple damage cases of the frame structure based on the discriminative features. The potential of the machine learning architecture is tested for an unseen dataset that was not used in training as well as with some datasets from entirely new damages close to existing (i.e., trained) damage classes. The results are then compared with those obtained using three other combinations of features and learning algorithms—(i) histogram of oriented gradients (HOG) feature with SVM, (ii) SURF feature with k‐nearest neighbours (KNN) and (iii) HOG feature with KNN. In order to examine the robustness of the approach, the study is further extended by considering environmental variabilities along with the localisation and quantification of damage. The experimental results show that the machine learning architecture can effectively classify the undamaged and different joint damage classes with high testing accuracy that indicates its SHM potential for such frame structures.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.