{"title":"运用蓝宝石因果关系模型和扩展集成设计模型分析了设计中的推理模式","authors":"A. Bhatt, A. Majumder, A. Chakrabarti","doi":"10.1017/S0890060421000214","DOIUrl":null,"url":null,"abstract":"Abstract Literature suggests that people typically understand knowledge by induction and produce knowledge by synthesis. This paper revisits the various modes of reasoning – explanatory abduction, innovative abduction, deduction, and induction – that have been proposed by earlier researchers as crucial modes of reasoning underlying the design process. First, our paper expands earlier work on abductive reasoning – an essential mode of reasoning involved in the process of synthesis – by understanding its role with the help of the “SAPPhIRE” model of causality. The explanations of abductive reasoning in design using the SAPPhIRE model have been compared with those using existing models. Second, the paper captures and analyzes various modes of reasoning during design synthesis with the help of the “Extended Integrated Model of Designing”. The analysis of participants' verbal speech and outcomes shows the model's ability to explain the various modes of reasoning that occur in design. The results indicate the above models to provide a more extensive account of reasoning in design synthesis. Earlier empirical validation of both the models lends further support to the claim of their explanatory capacity.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"384 - 403"},"PeriodicalIF":1.7000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analyzing the modes of reasoning in design using the SAPPhIRE model of causality and the Extended Integrated Model of Designing\",\"authors\":\"A. Bhatt, A. Majumder, A. Chakrabarti\",\"doi\":\"10.1017/S0890060421000214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Literature suggests that people typically understand knowledge by induction and produce knowledge by synthesis. This paper revisits the various modes of reasoning – explanatory abduction, innovative abduction, deduction, and induction – that have been proposed by earlier researchers as crucial modes of reasoning underlying the design process. First, our paper expands earlier work on abductive reasoning – an essential mode of reasoning involved in the process of synthesis – by understanding its role with the help of the “SAPPhIRE” model of causality. The explanations of abductive reasoning in design using the SAPPhIRE model have been compared with those using existing models. Second, the paper captures and analyzes various modes of reasoning during design synthesis with the help of the “Extended Integrated Model of Designing”. The analysis of participants' verbal speech and outcomes shows the model's ability to explain the various modes of reasoning that occur in design. The results indicate the above models to provide a more extensive account of reasoning in design synthesis. Earlier empirical validation of both the models lends further support to the claim of their explanatory capacity.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\"35 1\",\"pages\":\"384 - 403\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060421000214\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060421000214","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Analyzing the modes of reasoning in design using the SAPPhIRE model of causality and the Extended Integrated Model of Designing
Abstract Literature suggests that people typically understand knowledge by induction and produce knowledge by synthesis. This paper revisits the various modes of reasoning – explanatory abduction, innovative abduction, deduction, and induction – that have been proposed by earlier researchers as crucial modes of reasoning underlying the design process. First, our paper expands earlier work on abductive reasoning – an essential mode of reasoning involved in the process of synthesis – by understanding its role with the help of the “SAPPhIRE” model of causality. The explanations of abductive reasoning in design using the SAPPhIRE model have been compared with those using existing models. Second, the paper captures and analyzes various modes of reasoning during design synthesis with the help of the “Extended Integrated Model of Designing”. The analysis of participants' verbal speech and outcomes shows the model's ability to explain the various modes of reasoning that occur in design. The results indicate the above models to provide a more extensive account of reasoning in design synthesis. Earlier empirical validation of both the models lends further support to the claim of their explanatory capacity.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.