L. Bourgeois, S. Fliss, Jean-François Fritsch, C. Hazard, A. Recoquillay
{"title":"部分开放波导中的散射:前向问题","authors":"L. Bourgeois, S. Fliss, Jean-François Fritsch, C. Hazard, A. Recoquillay","doi":"10.1093/imamat/hxad004","DOIUrl":null,"url":null,"abstract":"\n This paper is dedicated to an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving that such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scattering in a partially open waveguide: the forward problem\",\"authors\":\"L. Bourgeois, S. Fliss, Jean-François Fritsch, C. Hazard, A. Recoquillay\",\"doi\":\"10.1093/imamat/hxad004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper is dedicated to an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving that such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imamat/hxad004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxad004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scattering in a partially open waveguide: the forward problem
This paper is dedicated to an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem in the Fredholm sense (uniqueness implies existence) and exhibit the asymptotic behaviour of the solution in the longitudinal direction with the help of the Kondratiev approach. Having in mind the numerical computation of the solution, we also propose some transparent boundary conditions in such longitudinal direction, based on Dirichlet-to-Neumann operators. After proving that such artificial conditions actually enable us to approximate the exact solution, some numerical experiments illustrate the quality of such approximation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.