一类椭圆曲线乘积的有理等价

Pub Date : 2020-03-05 DOI:10.5802/JTNB.1148
Jonathan R. Love
{"title":"一类椭圆曲线乘积的有理等价","authors":"Jonathan R. Love","doi":"10.5802/JTNB.1148","DOIUrl":null,"url":null,"abstract":"Given a pair of elliptic curves $E_1,E_2$ over a field $k$, we have a natural map $\\text{CH}^1(E_1)_0\\otimes\\text{CH}^1(E_2)_0\\to\\text{CH}^2(E_1\\times E_2)$, and a conjecture due to Beilinson predicts that the image of this map is finite when $k$ is a number field. We construct a $2$-parameter family of elliptic curves that can be used to produce examples of pairs $E_1,E_2$ where this image is finite. The family is constructed to guarantee the existence of a rational curve passing through a specified point in the Kummer surface of $E_1\\times E_2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rational Equivalences on Products of Elliptic Curves in a Family\",\"authors\":\"Jonathan R. Love\",\"doi\":\"10.5802/JTNB.1148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a pair of elliptic curves $E_1,E_2$ over a field $k$, we have a natural map $\\\\text{CH}^1(E_1)_0\\\\otimes\\\\text{CH}^1(E_2)_0\\\\to\\\\text{CH}^2(E_1\\\\times E_2)$, and a conjecture due to Beilinson predicts that the image of this map is finite when $k$ is a number field. We construct a $2$-parameter family of elliptic curves that can be used to produce examples of pairs $E_1,E_2$ where this image is finite. The family is constructed to guarantee the existence of a rational curve passing through a specified point in the Kummer surface of $E_1\\\\times E_2$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/JTNB.1148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/JTNB.1148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定域$k$上的一对椭圆曲线$E_1,E_2$,我们有一个自然映射$\text{CH}^1(E_1)_0\otimes\text{CH}^1(E2)_0\to\text{CH}^2(E_1\timesE_2)$,并且由Beilinson提出的猜想预测当$k$是一个数域时,该映射的图像是有限的。我们构造了一个$2$参数的椭圆曲线族,该族可用于生成对$E_1,E_2$的例子,其中该图像是有限的。构造该族是为了保证通过$E_1\times E_2$的Kummer曲面中指定点的有理曲线的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rational Equivalences on Products of Elliptic Curves in a Family
Given a pair of elliptic curves $E_1,E_2$ over a field $k$, we have a natural map $\text{CH}^1(E_1)_0\otimes\text{CH}^1(E_2)_0\to\text{CH}^2(E_1\times E_2)$, and a conjecture due to Beilinson predicts that the image of this map is finite when $k$ is a number field. We construct a $2$-parameter family of elliptic curves that can be used to produce examples of pairs $E_1,E_2$ where this image is finite. The family is constructed to guarantee the existence of a rational curve passing through a specified point in the Kummer surface of $E_1\times E_2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信