线排列的超可解分辨率

IF 0.6 4区 数学 Q3 MATHEMATICS
J. Kabat
{"title":"线排列的超可解分辨率","authors":"J. Kabat","doi":"10.14492/hokmj/2021-540","DOIUrl":null,"url":null,"abstract":"The main purpose of the present paper is to study the numerical properties of supersolvable resolutions of line arrangements. We provide upper-bounds on the so-called extension to supersolvability numbers for certain extreme line arrangements in $\\mathbb{P}^{2}_{\\mathbb{C}}$ and we show that these numbers \\textbf{are not} determined by the intersection lattice of the given arrangement.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supersolvable resolutions of line arrangements\",\"authors\":\"J. Kabat\",\"doi\":\"10.14492/hokmj/2021-540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of the present paper is to study the numerical properties of supersolvable resolutions of line arrangements. We provide upper-bounds on the so-called extension to supersolvability numbers for certain extreme line arrangements in $\\\\mathbb{P}^{2}_{\\\\mathbb{C}}$ and we show that these numbers \\\\textbf{are not} determined by the intersection lattice of the given arrangement.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2021-540\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2021-540","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是研究线排列的超可解分辨率的数值性质。本文给出了$\mathbb{P}^{2}_{\mathbb{C}}$中某些极值线排列的所谓超可解数扩展的上界,并证明了\textbf{这些数不是}由给定排列的交格决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supersolvable resolutions of line arrangements
The main purpose of the present paper is to study the numerical properties of supersolvable resolutions of line arrangements. We provide upper-bounds on the so-called extension to supersolvability numbers for certain extreme line arrangements in $\mathbb{P}^{2}_{\mathbb{C}}$ and we show that these numbers \textbf{are not} determined by the intersection lattice of the given arrangement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信