蓝藻驱动的混合营养两种生物膜在生物技术应用中的应用

Biofilms Pub Date : 2020-07-01 DOI:10.5194/biofilms9-80
Katja Bühler, Anna Hoschek, A. Schmid, Ingeborg Heuschkel, R. Karande
{"title":"蓝藻驱动的混合营养两种生物膜在生物技术应用中的应用","authors":"Katja Bühler, Anna Hoschek, A. Schmid, Ingeborg Heuschkel, R. Karande","doi":"10.5194/biofilms9-80","DOIUrl":null,"url":null,"abstract":"<p>&#160;</p>\n<p>Despite photo-biocatalysis developing remarkably and the huge potential of photoautotrophic microorganisms for eco-efficient production scenarios, photo-biotechnology is still in its infancy. The lack of scalable photo-bioreactors that provide efficient light transmission, CO<sub>2</sub> supply, and O<sub>2</sub> degassing and thus enable high cell densities (HCD), constitutes a key bottleneck, especially if cost-sensitive bulk chemicals are the product of choice. Commercialized tubular photo-bioreactors with 100 to 600 mm inner diameter offer a surface area to volume ratio (SA/V) of over 100 m<sup>2</sup> m<sup>-3</sup> enabling the efficient capturing of incident solar radiation.<sup>1</sup> Here we introduce a new generation of photo-bioreactors based on capillary biofilm reactors. The biofilm is composed of two strains, namely the photoautotrophic strain <em>Synechocystis</em> sp. PCC 6803 and the chemoheterotrophic strain <em>Pseudomonas taiwanensis</em> VLB120, which serves as a biofilm supporter strain. <em>Pseudomonas</em> sp. is lowering the pO<sub>2</sub> in the system, which otherwise would toxify the Cyanobacteria. Furthermore, it produces extrapolymeric substances (EPS) and produces a kind of seeding layer promoting the attachment of <em>Synechocystis</em> sp.. <em>Synechocystis</em> sp. on the other hand produces organic compounds and oxygen consumed by <em>Pseudomonas</em> sp. The system is run completely without any organic carbon source.</p>\n<p>Depending on the functionalities engineered into the biofilm forming organisms, these systems can be used for biotechnological applications. Here, we will present data on the physiology of the mixed trophies biofilm, and the challenging conversion of cyclohexane to caprolactone, and further on to 6-hydroxyadipic acid, both being important monomers for Nylon production.</p>\n<p>&#160;</p>\n<p><strong>References </strong></p>\n<ul>\n<li>[1] Posten, C. Eng. In Life Science. (2009) 9:165-177</li>\n<li>[2] Hoschek, A. et al Bioresource Technology. (2019) 282: 171-178</li>\n</ul>\n<p>&#160;</p>\n<p>tract HTML here.</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixed-trophies two species biofilms driven by Cyanobacteria for biotechnnological applications\",\"authors\":\"Katja Bühler, Anna Hoschek, A. Schmid, Ingeborg Heuschkel, R. Karande\",\"doi\":\"10.5194/biofilms9-80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>&#160;</p>\\n<p>Despite photo-biocatalysis developing remarkably and the huge potential of photoautotrophic microorganisms for eco-efficient production scenarios, photo-biotechnology is still in its infancy. The lack of scalable photo-bioreactors that provide efficient light transmission, CO<sub>2</sub> supply, and O<sub>2</sub> degassing and thus enable high cell densities (HCD), constitutes a key bottleneck, especially if cost-sensitive bulk chemicals are the product of choice. Commercialized tubular photo-bioreactors with 100 to 600 mm inner diameter offer a surface area to volume ratio (SA/V) of over 100 m<sup>2</sup> m<sup>-3</sup> enabling the efficient capturing of incident solar radiation.<sup>1</sup> Here we introduce a new generation of photo-bioreactors based on capillary biofilm reactors. The biofilm is composed of two strains, namely the photoautotrophic strain <em>Synechocystis</em> sp. PCC 6803 and the chemoheterotrophic strain <em>Pseudomonas taiwanensis</em> VLB120, which serves as a biofilm supporter strain. <em>Pseudomonas</em> sp. is lowering the pO<sub>2</sub> in the system, which otherwise would toxify the Cyanobacteria. Furthermore, it produces extrapolymeric substances (EPS) and produces a kind of seeding layer promoting the attachment of <em>Synechocystis</em> sp.. <em>Synechocystis</em> sp. on the other hand produces organic compounds and oxygen consumed by <em>Pseudomonas</em> sp. The system is run completely without any organic carbon source.</p>\\n<p>Depending on the functionalities engineered into the biofilm forming organisms, these systems can be used for biotechnological applications. Here, we will present data on the physiology of the mixed trophies biofilm, and the challenging conversion of cyclohexane to caprolactone, and further on to 6-hydroxyadipic acid, both being important monomers for Nylon production.</p>\\n<p>&#160;</p>\\n<p><strong>References </strong></p>\\n<ul>\\n<li>[1] Posten, C. Eng. In Life Science. (2009) 9:165-177</li>\\n<li>[2] Hoschek, A. et al Bioresource Technology. (2019) 282: 171-178</li>\\n</ul>\\n<p>&#160;</p>\\n<p>tract HTML here.</p>\",\"PeriodicalId\":87392,\"journal\":{\"name\":\"Biofilms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/biofilms9-80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/biofilms9-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

 ;尽管光生物催化发展显著,光自养微生物在生态高效生产场景中具有巨大潜力,但光生物技术仍处于初级阶段。缺乏可扩展的光生物反应器来提供有效的光传输、CO2供应和O2脱气,从而实现高细胞密度(HCD),这是一个关键的瓶颈,尤其是在选择成本敏感的散装化学品的情况下。内径为100至600 mm的商业化管状光生物反应器的表面积与体积比(SA/V)超过100 m2 m-3,能够有效捕获入射的太阳辐射。1在这里,我们介绍了基于毛细管生物膜反应器的新一代光生物反应剂。生物膜由两个菌株组成,即光自养菌株Synechocystis sp.PCC 6803和作为生物膜载体的化学异养菌株台湾假单胞菌VLB120。假单胞菌正在降低系统中的pO2,否则会使蓝藻中毒。此外,它产生外聚合物(EPS),并产生一种促进聚囊藻附着的种子层。聚囊藻另一方面产生有机化合物和假单胞菌消耗的氧气。该系统完全在没有任何有机碳源的情况下运行。根据生物膜形成生物体的功能,这些系统可用于生物技术应用。在这里,我们将介绍混合战利品生物膜的生理学数据,以及环己烷转化为己内酯的挑战性转化,以及进一步转化为6-羟基己二酸的数据,这两种都是尼龙生产的重要单体 ;参考文献[1]Posten,C.Eng.生命科学。(2009)9:165-177[2]Hoschek,A.等人《生物资源技术》。(2019)282:171-178 ;在此处拖动HTML。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed-trophies two species biofilms driven by Cyanobacteria for biotechnnological applications

 

Despite photo-biocatalysis developing remarkably and the huge potential of photoautotrophic microorganisms for eco-efficient production scenarios, photo-biotechnology is still in its infancy. The lack of scalable photo-bioreactors that provide efficient light transmission, CO2 supply, and O2 degassing and thus enable high cell densities (HCD), constitutes a key bottleneck, especially if cost-sensitive bulk chemicals are the product of choice. Commercialized tubular photo-bioreactors with 100 to 600 mm inner diameter offer a surface area to volume ratio (SA/V) of over 100 m2 m-3 enabling the efficient capturing of incident solar radiation.1 Here we introduce a new generation of photo-bioreactors based on capillary biofilm reactors. The biofilm is composed of two strains, namely the photoautotrophic strain Synechocystis sp. PCC 6803 and the chemoheterotrophic strain Pseudomonas taiwanensis VLB120, which serves as a biofilm supporter strain. Pseudomonas sp. is lowering the pO2 in the system, which otherwise would toxify the Cyanobacteria. Furthermore, it produces extrapolymeric substances (EPS) and produces a kind of seeding layer promoting the attachment of Synechocystis sp.. Synechocystis sp. on the other hand produces organic compounds and oxygen consumed by Pseudomonas sp. The system is run completely without any organic carbon source.

Depending on the functionalities engineered into the biofilm forming organisms, these systems can be used for biotechnological applications. Here, we will present data on the physiology of the mixed trophies biofilm, and the challenging conversion of cyclohexane to caprolactone, and further on to 6-hydroxyadipic acid, both being important monomers for Nylon production.

 

References

  • [1] Posten, C. Eng. In Life Science. (2009) 9:165-177
  • [2] Hoschek, A. et al Bioresource Technology. (2019) 282: 171-178

 

tract HTML here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信