耦合超导Transmon量子比特的个体性能研究

IF 1.9 Q3 PHYSICS, CONDENSED MATTER
H. G. Ahmad, Caleb Jordan, Roald van den Boogaart, Daan Waardenburg, Christos Zachariadis, P. Mastrovito, Asen Lyubenov Georgiev, D. Montemurro, G. Pepe, Marten Arthers, A. Bruno, F. Tafuri, O. Mukhanov, M. Arzeo, D. Massarotti
{"title":"耦合超导Transmon量子比特的个体性能研究","authors":"H. G. Ahmad, Caleb Jordan, Roald van den Boogaart, Daan Waardenburg, Christos Zachariadis, P. Mastrovito, Asen Lyubenov Georgiev, D. Montemurro, G. Pepe, Marten Arthers, A. Bruno, F. Tafuri, O. Mukhanov, M. Arzeo, D. Massarotti","doi":"10.3390/condmat8010029","DOIUrl":null,"url":null,"abstract":"The strong requirement for high-performing quantum computing led to intensive research on novel quantum platforms in the last decades. The circuital nature of Josephson-based quantum superconducting systems powerfully supports massive circuital freedom, which allowed for the implementation of a wide range of qubit designs, and an easy interface with the quantum processing unit. However, this unavoidably introduces a coupling with the environment, and thus to extra decoherence sources. Moreover, at the time of writing, control and readout protocols mainly use analogue microwave electronics, which limit the otherwise reasonable scalability in superconducting quantum circuits. Within the future perspective to improve scalability by integrating novel control energy-efficient superconducting electronics at the quantum stage in a multi-chip module, we report on an all-microwave characterization of a planar two-transmon qubits device, which involves state-of-the-art control pulses optimization. We demonstrate that the single-qubit average gate fidelity is mainly limited by the gate pulse duration and the quality of the optimization, and thus does not preclude the integration in novel hybrid quantum-classical superconducting devices.","PeriodicalId":10665,"journal":{"name":"Condensed Matter","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating the Individual Performances of Coupled Superconducting Transmon Qubits\",\"authors\":\"H. G. Ahmad, Caleb Jordan, Roald van den Boogaart, Daan Waardenburg, Christos Zachariadis, P. Mastrovito, Asen Lyubenov Georgiev, D. Montemurro, G. Pepe, Marten Arthers, A. Bruno, F. Tafuri, O. Mukhanov, M. Arzeo, D. Massarotti\",\"doi\":\"10.3390/condmat8010029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong requirement for high-performing quantum computing led to intensive research on novel quantum platforms in the last decades. The circuital nature of Josephson-based quantum superconducting systems powerfully supports massive circuital freedom, which allowed for the implementation of a wide range of qubit designs, and an easy interface with the quantum processing unit. However, this unavoidably introduces a coupling with the environment, and thus to extra decoherence sources. Moreover, at the time of writing, control and readout protocols mainly use analogue microwave electronics, which limit the otherwise reasonable scalability in superconducting quantum circuits. Within the future perspective to improve scalability by integrating novel control energy-efficient superconducting electronics at the quantum stage in a multi-chip module, we report on an all-microwave characterization of a planar two-transmon qubits device, which involves state-of-the-art control pulses optimization. We demonstrate that the single-qubit average gate fidelity is mainly limited by the gate pulse duration and the quality of the optimization, and thus does not preclude the integration in novel hybrid quantum-classical superconducting devices.\",\"PeriodicalId\":10665,\"journal\":{\"name\":\"Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/condmat8010029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat8010029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几十年里,对高性能量子计算的强烈需求导致了对新型量子平台的深入研究。基于约瑟夫逊的量子超导系统的电路性质有力地支持了巨大的电路自由度,这允许实现广泛的量子位设计,并与量子处理单元轻松接口。然而,这不可避免地引入了与环境的耦合,从而引入了额外的退相干源。此外,在撰写本文时,控制和读出协议主要使用模拟微波电子学,这限制了超导量子电路的合理可扩展性。从未来的角度来看,为了通过在多芯片模块中集成量子级的新型控制高能超导电子器件来提高可扩展性,我们报道了平面双传输量子比特器件的全微波特性,其中涉及最先进的控制脉冲优化。我们证明,单量子比特平均栅极保真度主要受到栅极脉冲持续时间和优化质量的限制,因此不排除在新型混合量子经典超导器件中集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Individual Performances of Coupled Superconducting Transmon Qubits
The strong requirement for high-performing quantum computing led to intensive research on novel quantum platforms in the last decades. The circuital nature of Josephson-based quantum superconducting systems powerfully supports massive circuital freedom, which allowed for the implementation of a wide range of qubit designs, and an easy interface with the quantum processing unit. However, this unavoidably introduces a coupling with the environment, and thus to extra decoherence sources. Moreover, at the time of writing, control and readout protocols mainly use analogue microwave electronics, which limit the otherwise reasonable scalability in superconducting quantum circuits. Within the future perspective to improve scalability by integrating novel control energy-efficient superconducting electronics at the quantum stage in a multi-chip module, we report on an all-microwave characterization of a planar two-transmon qubits device, which involves state-of-the-art control pulses optimization. We demonstrate that the single-qubit average gate fidelity is mainly limited by the gate pulse duration and the quality of the optimization, and thus does not preclude the integration in novel hybrid quantum-classical superconducting devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter
Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
2.90
自引率
11.80%
发文量
58
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信