S. Agostini, M. Y. Savaşçın, P. D. Giuseppe, Flavio Di Stefano, Ö. Karaoǧlu, M. Lustrino, P. Manetti, Y. Ersoy, S. Kürüm, A. Önal
{"title":"东安纳托利亚埃拉济格-通切利地区新近纪火山作用:年代学和岩石学约束","authors":"S. Agostini, M. Y. Savaşçın, P. D. Giuseppe, Flavio Di Stefano, Ö. Karaoǧlu, M. Lustrino, P. Manetti, Y. Ersoy, S. Kürüm, A. Önal","doi":"10.3301/IJG.2019.18","DOIUrl":null,"url":null,"abstract":"The Elazig and Tunceli provinces in eastern Anatolia host a complex succession of Miocene-Pleistocene effusive and explosive volcanic rocks, divided into four distinct volcanic phases. The most abundant and widespread products are the calcalkaline Mazgirt volcanic rocks, characterized by wide Sr isotope variations (87Sr/86Sr ~0.7054-0.7077) and narrower 143Nd/144Nd (~0.51246-0.51260) and Pb isotopes (e.g., 206Pb/204Pb ~18.89-19.13). New 40Ar-39Ar ages indicate that Mazgirt volcanic activity occurred between ~16.3 and 15.1 Ma. The other three volcanic phases are represented by the Tunceli mildly alkaline basaltic lavas (~11.4-11.0 Ma), the Pliocene Karakocan (~4.1 Ma) and Pleistocene Elazig (~1.9-1.6 Ma) Na-alkali basaltic lavas with clear OIB-like geochemical signature.Mazgirt volcanics can be subdivided on the base of mode of emplacement into lava flows and lava domes units characterized by petrographic, chemical and isotopic differences: lava flows are calcalkaline, whereas lava domes mostly belong to a high-K calcalkaline series and are, on average, more LREE- and 87Sr-enriched. Lava domes are more porphyritic, with a phenocryst assemblage dominated by amphibole, whereas plagioclase and clinopyroxene are the most abundant phenocryst phases in lava flows, pointing out that evolution of dome magmas occurred in conditions of slightly higher pressure, favouring the crystallization of hydrous phases.The Karabakir Formation, previously reported as late Miocene- Pliocene, encloses Mazgirt volcanics and is capped by Tunceli basalts. These new age data constrain the Karabakir Formation emplacement from early to late Miocene.The evolution of this igneous activity mirrors the geodynamic framework of the region: the early-middle Miocene Mazgirt volcanics represent arc volcanism related to Eurasia-Arabia convergence. The late Miocene Tunceli basalts postdate the onset of post-collisional tectonics in Eastern Anatolia, whereas the Karakocan and Elazig volcanic rocks were emplaced after the initiation of strike-slip motion on the North Anatolian and East Anatolian Fault systems.","PeriodicalId":49317,"journal":{"name":"Italian Journal of Geosciences","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3301/IJG.2019.18","citationCount":"6","resultStr":"{\"title\":\"Neogene volcanism in Elazig-Tunceli area (eastern Anatolia): geochronological and petrological constraints\",\"authors\":\"S. Agostini, M. Y. Savaşçın, P. D. Giuseppe, Flavio Di Stefano, Ö. Karaoǧlu, M. Lustrino, P. Manetti, Y. Ersoy, S. Kürüm, A. Önal\",\"doi\":\"10.3301/IJG.2019.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Elazig and Tunceli provinces in eastern Anatolia host a complex succession of Miocene-Pleistocene effusive and explosive volcanic rocks, divided into four distinct volcanic phases. The most abundant and widespread products are the calcalkaline Mazgirt volcanic rocks, characterized by wide Sr isotope variations (87Sr/86Sr ~0.7054-0.7077) and narrower 143Nd/144Nd (~0.51246-0.51260) and Pb isotopes (e.g., 206Pb/204Pb ~18.89-19.13). New 40Ar-39Ar ages indicate that Mazgirt volcanic activity occurred between ~16.3 and 15.1 Ma. The other three volcanic phases are represented by the Tunceli mildly alkaline basaltic lavas (~11.4-11.0 Ma), the Pliocene Karakocan (~4.1 Ma) and Pleistocene Elazig (~1.9-1.6 Ma) Na-alkali basaltic lavas with clear OIB-like geochemical signature.Mazgirt volcanics can be subdivided on the base of mode of emplacement into lava flows and lava domes units characterized by petrographic, chemical and isotopic differences: lava flows are calcalkaline, whereas lava domes mostly belong to a high-K calcalkaline series and are, on average, more LREE- and 87Sr-enriched. Lava domes are more porphyritic, with a phenocryst assemblage dominated by amphibole, whereas plagioclase and clinopyroxene are the most abundant phenocryst phases in lava flows, pointing out that evolution of dome magmas occurred in conditions of slightly higher pressure, favouring the crystallization of hydrous phases.The Karabakir Formation, previously reported as late Miocene- Pliocene, encloses Mazgirt volcanics and is capped by Tunceli basalts. These new age data constrain the Karabakir Formation emplacement from early to late Miocene.The evolution of this igneous activity mirrors the geodynamic framework of the region: the early-middle Miocene Mazgirt volcanics represent arc volcanism related to Eurasia-Arabia convergence. The late Miocene Tunceli basalts postdate the onset of post-collisional tectonics in Eastern Anatolia, whereas the Karakocan and Elazig volcanic rocks were emplaced after the initiation of strike-slip motion on the North Anatolian and East Anatolian Fault systems.\",\"PeriodicalId\":49317,\"journal\":{\"name\":\"Italian Journal of Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3301/IJG.2019.18\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3301/IJG.2019.18\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3301/IJG.2019.18","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Neogene volcanism in Elazig-Tunceli area (eastern Anatolia): geochronological and petrological constraints
The Elazig and Tunceli provinces in eastern Anatolia host a complex succession of Miocene-Pleistocene effusive and explosive volcanic rocks, divided into four distinct volcanic phases. The most abundant and widespread products are the calcalkaline Mazgirt volcanic rocks, characterized by wide Sr isotope variations (87Sr/86Sr ~0.7054-0.7077) and narrower 143Nd/144Nd (~0.51246-0.51260) and Pb isotopes (e.g., 206Pb/204Pb ~18.89-19.13). New 40Ar-39Ar ages indicate that Mazgirt volcanic activity occurred between ~16.3 and 15.1 Ma. The other three volcanic phases are represented by the Tunceli mildly alkaline basaltic lavas (~11.4-11.0 Ma), the Pliocene Karakocan (~4.1 Ma) and Pleistocene Elazig (~1.9-1.6 Ma) Na-alkali basaltic lavas with clear OIB-like geochemical signature.Mazgirt volcanics can be subdivided on the base of mode of emplacement into lava flows and lava domes units characterized by petrographic, chemical and isotopic differences: lava flows are calcalkaline, whereas lava domes mostly belong to a high-K calcalkaline series and are, on average, more LREE- and 87Sr-enriched. Lava domes are more porphyritic, with a phenocryst assemblage dominated by amphibole, whereas plagioclase and clinopyroxene are the most abundant phenocryst phases in lava flows, pointing out that evolution of dome magmas occurred in conditions of slightly higher pressure, favouring the crystallization of hydrous phases.The Karabakir Formation, previously reported as late Miocene- Pliocene, encloses Mazgirt volcanics and is capped by Tunceli basalts. These new age data constrain the Karabakir Formation emplacement from early to late Miocene.The evolution of this igneous activity mirrors the geodynamic framework of the region: the early-middle Miocene Mazgirt volcanics represent arc volcanism related to Eurasia-Arabia convergence. The late Miocene Tunceli basalts postdate the onset of post-collisional tectonics in Eastern Anatolia, whereas the Karakocan and Elazig volcanic rocks were emplaced after the initiation of strike-slip motion on the North Anatolian and East Anatolian Fault systems.
期刊介绍:
The Italian Journal of Geosciences (born from the merging of the Bollettino della Società Geologica Italiana and the Bollettino del Servizio Geologico d''Italia) provides an international outlet for the publication of high-quality original research contributions in the broad field of the geosciences.
It publishes research papers, special short papers, review papers, discussion-and-replies for their rapid distribution to the international geosciences community.
The journal is firstly intended to call attention to the Italian territory and the adjacent areas for the exceptional role they play in the understanding of geological processes, in the development of modern geology and the Earth sciences in general.
The main focus of the journal is on the geology of Italy and the surrounding sedimentary basins and landmasses, and on their relationships with the Mediterranean geology and geodynamics. Nevertheless, manuscripts on process-oriented and regional studies concerning any other area of the World are also considered for publication.
Papers on structural geology, stratigraphy, sedimentology, basin analysis, paleontology, ecosystems, paleoceanography, paleoclimatology, planetary sciences, geomorphology, volcanology, mineralogy, geochemistry, petrology, geophysics, geodynamics, hydrogeology, geohazards, marine and engineering geology, modelling of geological process, history of geology, the conservation of the geological heritage, and all related applied sciences are welcome.