多元解析环境下的广义apell多项式与futer - bargmann变换

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Martino, K. Diki
{"title":"多元解析环境下的广义apell多项式与futer - bargmann变换","authors":"A. Martino, K. Diki","doi":"10.1142/s0219530522500191","DOIUrl":null,"url":null,"abstract":"‘ispaper dealswith some special integral transforms in the se‹ing of quaternionic valued slice polyanalytic functions. In particular, using the polyanalytic Fueter mappings it is possible to construct a new family of polynomials which are called the generalized Appell polynomials. Furthermore, the range of the polyanalytic Fueter mappings on two different polyanalytic Fock spaces is characterized. Finally, we study the polyanalytic Fueter-Bargmann transforms. AMS Classification: 44A15, 30G35, 42C15, 46E22","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Appell polynomials and Fueter-Bargmann transforms in the polyanalytic setting\",\"authors\":\"A. Martino, K. Diki\",\"doi\":\"10.1142/s0219530522500191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘ispaper dealswith some special integral transforms in the se‹ing of quaternionic valued slice polyanalytic functions. In particular, using the polyanalytic Fueter mappings it is possible to construct a new family of polynomials which are called the generalized Appell polynomials. Furthermore, the range of the polyanalytic Fueter mappings on two different polyanalytic Fock spaces is characterized. Finally, we study the polyanalytic Fueter-Bargmann transforms. AMS Classification: 44A15, 30G35, 42C15, 46E22\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530522500191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522500191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了四元数值切片多分析函数中的一些特殊积分变换。特别地,使用多解析Fueter映射,可以构造一个新的多项式族,称为广义Appel多项式。此外,刻画了两个不同的多解析Fock空间上的多解析Fueter映射的范围。最后,我们研究了多解析Fueter-Bargmann变换。AMS分类:44A15、30G35、42C15、46E22
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Appell polynomials and Fueter-Bargmann transforms in the polyanalytic setting
‘ispaper dealswith some special integral transforms in the se‹ing of quaternionic valued slice polyanalytic functions. In particular, using the polyanalytic Fueter mappings it is possible to construct a new family of polynomials which are called the generalized Appell polynomials. Furthermore, the range of the polyanalytic Fueter mappings on two different polyanalytic Fock spaces is characterized. Finally, we study the polyanalytic Fueter-Bargmann transforms. AMS Classification: 44A15, 30G35, 42C15, 46E22
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信