{"title":"固定床连续流萃取生物化合物:现象学模型中进口dirichlet条件切换到danckwerts条件的影响","authors":"N. A. de Oliveira, J. Rabi","doi":"10.18011/bioeng2021v15n4p538-560","DOIUrl":null,"url":null,"abstract":"Phenomenological models have increasingly become vital to bioprocess engineering. In continuous-flow biocompounds extraction models, diffusion requires an extra boundary condition at exit (usually null Neumann condition) while either Dirichlet or Danckwerts condition can be imposed at inlet. By taking an extant case study and with the help of an in-house lattice-Boltzmann simulator, this work numerically examines prospective effects of interchanging aforesaid inlet conditions. Trial simulations were performed for scenarios ranging from convective-dominant to diffusive-dominant. Extraction yields numerically simulated under each inlet condition were compared with experimental data. Expected shape of extraction yield curves was simulated whenever process parameters were properly provided and differences due to switching inlet conditions became evident only in diffusion-dominant extraction scenarios. At diffusivities of order 10-6 m2 s-1, numerical results suggest that Danckwerts boundary condition should be preferred at bed inlet.","PeriodicalId":32292,"journal":{"name":"Revista Brasileira de Engenharia de Biossistemas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONTINUOUS-FLOW EXTRACTION OF BIOCOMPOUNDS IN FIXED BED: INFLUENCE OF SWAPPING FROM DIRICHLET TO DANCKWERTS CONDITION AT INLET IN PHENOMENOLOGICAL MODELS\",\"authors\":\"N. A. de Oliveira, J. Rabi\",\"doi\":\"10.18011/bioeng2021v15n4p538-560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenomenological models have increasingly become vital to bioprocess engineering. In continuous-flow biocompounds extraction models, diffusion requires an extra boundary condition at exit (usually null Neumann condition) while either Dirichlet or Danckwerts condition can be imposed at inlet. By taking an extant case study and with the help of an in-house lattice-Boltzmann simulator, this work numerically examines prospective effects of interchanging aforesaid inlet conditions. Trial simulations were performed for scenarios ranging from convective-dominant to diffusive-dominant. Extraction yields numerically simulated under each inlet condition were compared with experimental data. Expected shape of extraction yield curves was simulated whenever process parameters were properly provided and differences due to switching inlet conditions became evident only in diffusion-dominant extraction scenarios. At diffusivities of order 10-6 m2 s-1, numerical results suggest that Danckwerts boundary condition should be preferred at bed inlet.\",\"PeriodicalId\":32292,\"journal\":{\"name\":\"Revista Brasileira de Engenharia de Biossistemas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Engenharia de Biossistemas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18011/bioeng2021v15n4p538-560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Engenharia de Biossistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18011/bioeng2021v15n4p538-560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CONTINUOUS-FLOW EXTRACTION OF BIOCOMPOUNDS IN FIXED BED: INFLUENCE OF SWAPPING FROM DIRICHLET TO DANCKWERTS CONDITION AT INLET IN PHENOMENOLOGICAL MODELS
Phenomenological models have increasingly become vital to bioprocess engineering. In continuous-flow biocompounds extraction models, diffusion requires an extra boundary condition at exit (usually null Neumann condition) while either Dirichlet or Danckwerts condition can be imposed at inlet. By taking an extant case study and with the help of an in-house lattice-Boltzmann simulator, this work numerically examines prospective effects of interchanging aforesaid inlet conditions. Trial simulations were performed for scenarios ranging from convective-dominant to diffusive-dominant. Extraction yields numerically simulated under each inlet condition were compared with experimental data. Expected shape of extraction yield curves was simulated whenever process parameters were properly provided and differences due to switching inlet conditions became evident only in diffusion-dominant extraction scenarios. At diffusivities of order 10-6 m2 s-1, numerical results suggest that Danckwerts boundary condition should be preferred at bed inlet.