{"title":"梯度稳定Kähler-Ricci具有非负里奇曲率和可积标量曲率的孤子","authors":"Pak-Yeung Chan","doi":"10.4310/cag.2022.v30.n2.a2","DOIUrl":null,"url":null,"abstract":"We study the non Ricci flat gradient steady Kahler Ricci soliton with non-negative Ricci curvature and weak integrability condition of the scalar curvature $S$, namely $\\underline{\\lim}_{r\\to \\infty} r^{-1}\\int_{B_r} S=0$, and show that it is a quotient of $\\Sigma\\times \\mathbb{C}^{n-1-k}\\times N^k$, where $\\Sigma$ and $N$ denote the Hamilton's cigar soliton and some compact Kahler Ricci flat manifold respectively. As an application, we prove that any non Ricci flat gradient steady Kahler Ricci soliton with $Ric\\geq 0$, together with subquadratic volume growth or $\\limsup_{r\\to \\infty} rS<1$ must have universal covering space isometric to $\\Sigma\\times \\mathbb{C}^{n-1-k}\\times N^k$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gradient steady Kähler–Ricci solitons with non-negative Ricci curvature and integrable scalar curvature\",\"authors\":\"Pak-Yeung Chan\",\"doi\":\"10.4310/cag.2022.v30.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the non Ricci flat gradient steady Kahler Ricci soliton with non-negative Ricci curvature and weak integrability condition of the scalar curvature $S$, namely $\\\\underline{\\\\lim}_{r\\\\to \\\\infty} r^{-1}\\\\int_{B_r} S=0$, and show that it is a quotient of $\\\\Sigma\\\\times \\\\mathbb{C}^{n-1-k}\\\\times N^k$, where $\\\\Sigma$ and $N$ denote the Hamilton's cigar soliton and some compact Kahler Ricci flat manifold respectively. As an application, we prove that any non Ricci flat gradient steady Kahler Ricci soliton with $Ric\\\\geq 0$, together with subquadratic volume growth or $\\\\limsup_{r\\\\to \\\\infty} rS<1$ must have universal covering space isometric to $\\\\Sigma\\\\times \\\\mathbb{C}^{n-1-k}\\\\times N^k$.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2022.v30.n2.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n2.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Gradient steady Kähler–Ricci solitons with non-negative Ricci curvature and integrable scalar curvature
We study the non Ricci flat gradient steady Kahler Ricci soliton with non-negative Ricci curvature and weak integrability condition of the scalar curvature $S$, namely $\underline{\lim}_{r\to \infty} r^{-1}\int_{B_r} S=0$, and show that it is a quotient of $\Sigma\times \mathbb{C}^{n-1-k}\times N^k$, where $\Sigma$ and $N$ denote the Hamilton's cigar soliton and some compact Kahler Ricci flat manifold respectively. As an application, we prove that any non Ricci flat gradient steady Kahler Ricci soliton with $Ric\geq 0$, together with subquadratic volume growth or $\limsup_{r\to \infty} rS<1$ must have universal covering space isometric to $\Sigma\times \mathbb{C}^{n-1-k}\times N^k$.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.