Wei Wu, E. Aoyama, T. Hirogaki, K. Urabe, Hiroyoshi Sota
{"title":"改进熔喷法制备纳米纤维磨料抛光垫的研制","authors":"Wei Wu, E. Aoyama, T. Hirogaki, K. Urabe, Hiroyoshi Sota","doi":"10.1504/IJAT.2019.10019140","DOIUrl":null,"url":null,"abstract":"This study focuses on one of the applications of nanofibre: abrasive buffing. We proposed the oil adsorption physical model of abrasive buffing and compared it with experimental results to develop a nanofibre buffing pad. For realising the free-form nano surface, such as moulding die surface, we conducted a base experiment with different diameter fibres and different size grains and investigated its base polishing characteristics compared with commercial felt buff. From the experimental results, we considered the buffing mechanism of fibre and grain contact the workpiece surface to polish. As a result, the effect of combination of mesh size and grain size on polished surface roughness of the workpiece was demonstrated, and controlling the polished surface roughness using this low-cost new abrasive material in abrasive machining was realised.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of nanofibre abrasive buffing pad produced with modified melt blowing method\",\"authors\":\"Wei Wu, E. Aoyama, T. Hirogaki, K. Urabe, Hiroyoshi Sota\",\"doi\":\"10.1504/IJAT.2019.10019140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on one of the applications of nanofibre: abrasive buffing. We proposed the oil adsorption physical model of abrasive buffing and compared it with experimental results to develop a nanofibre buffing pad. For realising the free-form nano surface, such as moulding die surface, we conducted a base experiment with different diameter fibres and different size grains and investigated its base polishing characteristics compared with commercial felt buff. From the experimental results, we considered the buffing mechanism of fibre and grain contact the workpiece surface to polish. As a result, the effect of combination of mesh size and grain size on polished surface roughness of the workpiece was demonstrated, and controlling the polished surface roughness using this low-cost new abrasive material in abrasive machining was realised.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2019.10019140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2019.10019140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Development of nanofibre abrasive buffing pad produced with modified melt blowing method
This study focuses on one of the applications of nanofibre: abrasive buffing. We proposed the oil adsorption physical model of abrasive buffing and compared it with experimental results to develop a nanofibre buffing pad. For realising the free-form nano surface, such as moulding die surface, we conducted a base experiment with different diameter fibres and different size grains and investigated its base polishing characteristics compared with commercial felt buff. From the experimental results, we considered the buffing mechanism of fibre and grain contact the workpiece surface to polish. As a result, the effect of combination of mesh size and grain size on polished surface roughness of the workpiece was demonstrated, and controlling the polished surface roughness using this low-cost new abrasive material in abrasive machining was realised.