非强制抛物型障碍问题

IF 3.2 1区 数学 Q1 MATHEMATICS
F. Farroni, L. Greco, G. Moscariello, Gabriella Zecca
{"title":"非强制抛物型障碍问题","authors":"F. Farroni, L. Greco, G. Moscariello, Gabriella Zecca","doi":"10.1515/anona-2022-0322","DOIUrl":null,"url":null,"abstract":"Abstract We prove an existence result for obstacle problems related to convection-diffusion parabolic equations with singular coefficients in the convective term. Our operator is not coercive, the obstacle function is time-dependent irregular, and the coefficients in the lower-order term belong to a borderline mixed Lebesgue-Marcinkiewicz space.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncoercive parabolic obstacle problems\",\"authors\":\"F. Farroni, L. Greco, G. Moscariello, Gabriella Zecca\",\"doi\":\"10.1515/anona-2022-0322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove an existence result for obstacle problems related to convection-diffusion parabolic equations with singular coefficients in the convective term. Our operator is not coercive, the obstacle function is time-dependent irregular, and the coefficients in the lower-order term belong to a borderline mixed Lebesgue-Marcinkiewicz space.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0322\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0322","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要证明了一类对流项系数为奇异的对流扩散抛物方程障碍问题的存在性。我们的算子是非强制的,障碍函数是随时间变化的不规则的,低阶项的系数属于边界混合Lebesgue-Marcinkiewicz空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncoercive parabolic obstacle problems
Abstract We prove an existence result for obstacle problems related to convection-diffusion parabolic equations with singular coefficients in the convective term. Our operator is not coercive, the obstacle function is time-dependent irregular, and the coefficients in the lower-order term belong to a borderline mixed Lebesgue-Marcinkiewicz space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信